Spaces:
Running
Running
import os | |
import gradio as gr | |
from openai import OpenAI | |
from optillm.moa import mixture_of_agents | |
from optillm.mcts import chat_with_mcts | |
from optillm.bon import best_of_n_sampling | |
API_KEY = os.environ.get("HF_TOKEN") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
approach, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
client = OpenAI(api_key=API_KEY, base_url="https://api-inference.huggingface.co/models/"+model+"/v1") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# response = "" | |
final_response = mixture_of_agents(system_message, message, client, model) | |
return final_response | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown( | |
["meta-llama/Meta-Llama-3.1-70B-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct", "HuggingFaceH4/zephyr-7b-beta"], | |
value="meta-llama/Meta-Llama-3.1-70B-Instruct", label="Model", info="Choose the base model" | |
), | |
gr.Dropdown( | |
["bon", "mcts", "moa"], value="moa", label="Approach", info="Choose the approach" | |
), | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |