import os import gradio as gr from openai import OpenAI from optillm.moa import mixture_of_agents from optillm.mcts import chat_with_mcts from optillm.bon import best_of_n_sampling API_KEY = os.environ.get("HF_TOKEN") def respond( message, history: list[tuple[str, str]], model, approach, system_message, max_tokens, temperature, top_p, ): client = OpenAI(api_key=API_KEY, base_url="https://api-inference.huggingface.co/models/"+model+"/v1") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # response = "" final_response = mixture_of_agents(system_message, message, client, model) return final_response # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown( ["meta-llama/Meta-Llama-3.1-70B-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct", "HuggingFaceH4/zephyr-7b-beta"], value="meta-llama/Meta-Llama-3.1-70B-Instruct", label="Model", info="Choose the base model" ), gr.Dropdown( ["bon", "mcts", "moa"], value="moa", label="Approach", info="Choose the approach" ), gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()