Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ torch.set_float32_matmul_precision("highest")
|
|
17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
19 |
).to("cuda")
|
|
|
20 |
transform_image = transforms.Compose(
|
21 |
[
|
22 |
transforms.Resize((1024, 1024)),
|
@@ -25,6 +26,8 @@ transform_image = transforms.Compose(
|
|
25 |
]
|
26 |
)
|
27 |
|
|
|
|
|
28 |
@spaces.GPU
|
29 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
30 |
try:
|
@@ -44,48 +47,44 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
44 |
else:
|
45 |
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
46 |
background_frames = list(background_video.iter_frames(fps=fps))
|
47 |
-
elif bg_type in ["Color", "Image"]:
|
48 |
-
# Prepare background once if it's a static image or color
|
49 |
-
if bg_type == "Color":
|
50 |
-
color_rgb = tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
|
51 |
-
background_pil = Image.new("RGBA", (1024, 1024), color_rgb + (255,))
|
52 |
-
else: # bg_type == "Image":
|
53 |
-
background_pil = Image.open(bg_image).convert("RGBA").resize((1024, 1024))
|
54 |
-
background_tensor = transforms.ToTensor(background_pil).to("cuda")
|
55 |
else:
|
56 |
-
|
57 |
-
|
58 |
|
59 |
bg_frame_index = 0
|
60 |
frame_batch = []
|
|
|
61 |
for i, frame in enumerate(frames):
|
62 |
-
frame = Image.fromarray(frame)
|
63 |
-
frame = transforms.ToTensor(frame).to('cuda')
|
64 |
frame_batch.append(frame)
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
if video_handling == "slow_down":
|
73 |
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
74 |
bg_frame_index += 1
|
75 |
-
background_image = Image.fromarray(background_frame)
|
76 |
-
background_tensor = transforms.ToTensor(background_image).to("cuda")
|
77 |
else: # video_handling == "loop"
|
78 |
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
79 |
bg_frame_index += 1
|
80 |
-
background_image = Image.fromarray(background_frame)
|
81 |
-
|
82 |
-
|
83 |
-
processed_image = Image.composite(transforms.ToPILImage()(frame_batch[j].cpu()), transforms.ToPILImage()(background_tensor.cpu()), mask).resize(video.size)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
85 |
processed_frames.append(np.array(processed_image))
|
86 |
yield processed_image, None
|
87 |
-
|
88 |
-
frame_batch = []
|
89 |
|
90 |
|
91 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
@@ -107,6 +106,30 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
107 |
yield None, f"Error processing video: {e}"
|
108 |
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
111 |
with gr.Row():
|
112 |
in_video = gr.Video(label="Input Video", interactive=True)
|
|
|
17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
19 |
).to("cuda")
|
20 |
+
|
21 |
transform_image = transforms.Compose(
|
22 |
[
|
23 |
transforms.Resize((1024, 1024)),
|
|
|
26 |
]
|
27 |
)
|
28 |
|
29 |
+
BATCH_SIZE = 3
|
30 |
+
|
31 |
@spaces.GPU
|
32 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
33 |
try:
|
|
|
47 |
else:
|
48 |
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
49 |
background_frames = list(background_video.iter_frames(fps=fps))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
else:
|
51 |
+
background_frames = None
|
|
|
52 |
|
53 |
bg_frame_index = 0
|
54 |
frame_batch = []
|
55 |
+
|
56 |
for i, frame in enumerate(frames):
|
|
|
|
|
57 |
frame_batch.append(frame)
|
58 |
+
if len(frame_batch) == BATCH_SIZE or i == video.fps * video.duration -1: # Process batch or last frames
|
59 |
+
pil_images = [Image.fromarray(f) for f in frame_batch]
|
60 |
+
|
61 |
|
62 |
+
if bg_type == "Color":
|
63 |
+
processed_images = [process(img, color) for img in pil_images]
|
64 |
+
elif bg_type == "Image":
|
65 |
+
processed_images = [process(img, bg_image) for img in pil_images]
|
66 |
+
elif bg_type == "Video":
|
67 |
+
processed_images = []
|
68 |
+
for _ in range(len(frame_batch)):
|
69 |
if video_handling == "slow_down":
|
70 |
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
71 |
bg_frame_index += 1
|
72 |
+
background_image = Image.fromarray(background_frame)
|
|
|
73 |
else: # video_handling == "loop"
|
74 |
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
75 |
bg_frame_index += 1
|
76 |
+
background_image = Image.fromarray(background_frame)
|
77 |
+
|
78 |
+
processed_images.append(process(pil_images[_],background_image))
|
|
|
79 |
|
80 |
+
|
81 |
+
else:
|
82 |
+
processed_images = pil_images
|
83 |
+
|
84 |
+
for processed_image in processed_images:
|
85 |
processed_frames.append(np.array(processed_image))
|
86 |
yield processed_image, None
|
87 |
+
frame_batch = [] # Clear the batch
|
|
|
88 |
|
89 |
|
90 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
|
|
106 |
yield None, f"Error processing video: {e}"
|
107 |
|
108 |
|
109 |
+
def process(image, bg):
|
110 |
+
image_size = image.size
|
111 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
112 |
+
# Prediction
|
113 |
+
with torch.no_grad():
|
114 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
115 |
+
pred = preds[0].squeeze()
|
116 |
+
pred_pil = transforms.ToPILImage()(pred)
|
117 |
+
mask = pred_pil.resize(image_size)
|
118 |
+
|
119 |
+
if isinstance(bg, str) and bg.startswith("#"):
|
120 |
+
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
121 |
+
background = Image.new("RGBA", image_size, color_rgb + (255,))
|
122 |
+
elif isinstance(bg, Image.Image):
|
123 |
+
background = bg.convert("RGBA").resize(image_size)
|
124 |
+
else:
|
125 |
+
background = Image.open(bg).convert("RGBA").resize(image_size)
|
126 |
+
|
127 |
+
# Composite the image onto the background using the mask
|
128 |
+
image = Image.composite(image, background, mask)
|
129 |
+
|
130 |
+
return image
|
131 |
+
|
132 |
+
|
133 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
134 |
with gr.Row():
|
135 |
in_video = gr.Video(label="Input Video", interactive=True)
|