Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,133 +11,96 @@ import numpy as np
|
|
11 |
import os
|
12 |
import tempfile
|
13 |
import uuid
|
14 |
-
from concurrent.futures import ThreadPoolExecutor
|
15 |
-
import torch.nn as nn
|
16 |
-
import torch.cuda.amp # for mixed precision training
|
17 |
|
18 |
-
|
19 |
-
torch.set_float32_matmul_precision("high")
|
20 |
-
torch.backends.cudnn.benchmark = True # Enable cudnn autotuner
|
21 |
|
22 |
-
# Initialize model with optimization flags
|
23 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
24 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
-
birefnet.to("cuda").eval() # Ensure model is in eval mode
|
27 |
-
birefnet = torch.jit.script(birefnet) # JIT compilation for faster inference
|
28 |
-
|
29 |
-
# Pre-compile transforms for better performance
|
30 |
-
transform_image = transforms.Compose([
|
31 |
-
transforms.Resize((1024, 1024), antialias=True),
|
32 |
-
transforms.ToTensor(),
|
33 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
34 |
-
])
|
35 |
-
|
36 |
-
# Increased batch size for better GPU utilization
|
37 |
-
BATCH_SIZE = 8 # Increased from 3
|
38 |
-
NUM_WORKERS = 4 # For parallel processing
|
39 |
-
|
40 |
-
# Create a thread pool for parallel processing
|
41 |
-
executor = ThreadPoolExecutor(max_workers=NUM_WORKERS)
|
42 |
-
|
43 |
-
def process_batch(batch_data):
|
44 |
-
"""Process a batch of frames in parallel"""
|
45 |
-
images, backgrounds, image_sizes = zip(*batch_data)
|
46 |
-
|
47 |
-
# Stack images for batch processing
|
48 |
-
input_tensor = torch.stack(images).to("cuda")
|
49 |
-
|
50 |
-
# Use automatic mixed precision for faster computation
|
51 |
-
with torch.cuda.amp.autocast():
|
52 |
-
with torch.no_grad():
|
53 |
-
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
|
54 |
-
|
55 |
-
processed_frames = []
|
56 |
-
for pred, bg, size in zip(preds, backgrounds, image_sizes):
|
57 |
-
mask = transforms.ToPILImage()(pred.squeeze()).resize(size)
|
58 |
-
|
59 |
-
if isinstance(bg, str) and bg.startswith("#"):
|
60 |
-
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
61 |
-
background = Image.new("RGBA", size, color_rgb + (255,))
|
62 |
-
elif isinstance(bg, Image.Image):
|
63 |
-
background = bg.convert("RGBA").resize(size)
|
64 |
-
else:
|
65 |
-
background = Image.open(bg).convert("RGBA").resize(size)
|
66 |
-
|
67 |
-
# Use PIL's faster composite operation
|
68 |
-
image = Image.composite(images[0].resize(size), background, mask)
|
69 |
-
processed_frames.append(np.array(image))
|
70 |
-
|
71 |
-
return processed_frames
|
72 |
|
73 |
@spaces.GPU
|
74 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
75 |
try:
|
76 |
-
|
77 |
-
video = mp.VideoFileClip(vid, audio_buffersize=2000)
|
78 |
if fps == 0:
|
79 |
fps = video.fps
|
80 |
audio = video.audio
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Pre-process background if using video
|
87 |
if bg_type == "Video":
|
88 |
-
|
89 |
-
if
|
90 |
if video_handling == "slow_down":
|
91 |
-
|
92 |
-
factor=video.duration / bg_video_clip.duration)
|
93 |
else:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
yield gr.update(visible=False), gr.update(visible=True)
|
139 |
-
yield
|
140 |
-
|
141 |
except Exception as e:
|
142 |
print(f"Error: {e}")
|
143 |
yield gr.update(visible=False), gr.update(visible=True)
|
|
|
11 |
import os
|
12 |
import tempfile
|
13 |
import uuid
|
|
|
|
|
|
|
14 |
|
15 |
+
torch.set_float32_matmul_precision("highest")
|
|
|
|
|
16 |
|
|
|
17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
19 |
+
).to("cuda")
|
20 |
+
transform_image = transforms.Compose(
|
21 |
+
[
|
22 |
+
transforms.Resize((1024, 1024)),
|
23 |
+
transforms.ToTensor(),
|
24 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
25 |
+
]
|
26 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
@spaces.GPU
|
29 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
30 |
try:
|
31 |
+
video = mp.VideoFileClip(vid)
|
|
|
32 |
if fps == 0:
|
33 |
fps = video.fps
|
34 |
audio = video.audio
|
35 |
+
frames = video.iter_frames(fps=fps)
|
36 |
+
processed_frames = []
|
37 |
+
yield gr.update(visible=True), gr.update(visible=False)
|
38 |
+
|
|
|
|
|
39 |
if bg_type == "Video":
|
40 |
+
background_video = mp.VideoFileClip(bg_video)
|
41 |
+
if background_video.duration < video.duration:
|
42 |
if video_handling == "slow_down":
|
43 |
+
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
|
|
44 |
else:
|
45 |
+
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
46 |
+
background_frames = list(background_video.iter_frames(fps=fps))
|
47 |
+
elif bg_type in ["Color", "Image"]:
|
48 |
+
# Prepare background once if it's a static image or color
|
49 |
+
if bg_type == "Color":
|
50 |
+
color_rgb = tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
|
51 |
+
background_pil = Image.new("RGBA", (1024, 1024), color_rgb + (255,))
|
52 |
+
else: # bg_type == "Image":
|
53 |
+
background_pil = Image.open(bg_image).convert("RGBA").resize((1024, 1024))
|
54 |
+
background_tensor = transforms.ToTensor(background_pil).to("cuda")
|
55 |
+
else:
|
56 |
+
background_tensor = None
|
57 |
+
|
58 |
+
|
59 |
+
bg_frame_index = 0
|
60 |
+
frame_batch = []
|
61 |
+
for i, frame in enumerate(frames):
|
62 |
+
frame = Image.fromarray(frame)
|
63 |
+
frame = transforms.ToTensor(frame).to('cuda')
|
64 |
+
frame_batch.append(frame)
|
65 |
+
|
66 |
+
if len(frame_batch) >= 3 or i == int(video.fps * video.duration) - 1 :
|
67 |
+
input_images = torch.stack(frame_batch).to("cuda")
|
68 |
+
with torch.no_grad():
|
69 |
+
preds = birefnet(input_images)[-1].sigmoid()
|
70 |
+
for j, pred in enumerate(preds):
|
71 |
+
if bg_type == "Video":
|
72 |
+
if video_handling == "slow_down":
|
73 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
74 |
+
bg_frame_index += 1
|
75 |
+
background_image = Image.fromarray(background_frame).resize((1024, 1024))
|
76 |
+
background_tensor = transforms.ToTensor(background_image).to("cuda")
|
77 |
+
else: # video_handling == "loop"
|
78 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
79 |
+
bg_frame_index += 1
|
80 |
+
background_image = Image.fromarray(background_frame).resize((1024, 1024))
|
81 |
+
background_tensor = transforms.ToTensor(background_image).to("cuda")
|
82 |
+
mask = transforms.ToPILImage()(pred.cpu().squeeze())
|
83 |
+
processed_image = Image.composite(transforms.ToPILImage()(frame_batch[j].cpu()), transforms.ToPILImage()(background_tensor.cpu()), mask).resize(video.size)
|
84 |
+
|
85 |
+
processed_frames.append(np.array(processed_image))
|
86 |
+
yield processed_image, None
|
87 |
+
|
88 |
+
frame_batch = []
|
89 |
+
|
90 |
+
|
91 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
92 |
+
processed_video = processed_video.set_audio(audio)
|
93 |
+
|
94 |
+
temp_dir = "temp"
|
95 |
+
os.makedirs(temp_dir, exist_ok=True)
|
96 |
+
unique_filename = str(uuid.uuid4()) + ".mp4"
|
97 |
+
temp_filepath = os.path.join(temp_dir, unique_filename)
|
98 |
+
|
99 |
+
processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
|
100 |
+
|
101 |
yield gr.update(visible=False), gr.update(visible=True)
|
102 |
+
yield processed_image, temp_filepath
|
103 |
+
|
104 |
except Exception as e:
|
105 |
print(f"Error: {e}")
|
106 |
yield gr.update(visible=False), gr.update(visible=True)
|