import numpy as np | |
# from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \ | |
# back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \ | |
# x_hamburger_box, x_hot_dog_box, x_plus_box | |
from Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array | |
import matplotlib.pyplot as plt | |
######################################################################################################################## | |
# Make the data using all the code in Shape_Generation_Functions.py | |
def make_boxes(image_size, densities): | |
""" | |
:param image_size: [int] - the pixel height and width of the generated arrays | |
:param densities: [list] - of the values of each of the active pixels in each shape | |
:param shapes: [list] - of the various shapes desired for the dataset | |
:return: [list[tuple]] - [Array, Density, Thickness, Shape] | |
""" | |
matrix = [] | |
# | |
# for function in shapes: # Adds different types of shapes | |
# | |
# # Adds different density values | |
# for i in range(len(densities)): | |
# # Loops through the possible thickness values | |
# for j in range(image_size): # Adds additional Pixels | |
# thickness = j | |
# Array = (function(thickness, densities[i], image_size)) | |
# | |
# # Checks if there are any 0's left in the array to append | |
# if (np.where((Array == float(0)))[0] > 0).any(): | |
# the_tuple = (Array, str(function.__name__), densities[i], thickness) | |
# matrix.append(the_tuple) | |
# | |
# # Prevents solids shapes from being appended to the array | |
# else: | |
# break | |
# Establish the maximum thickness for each type of strut | |
max_vert = int(np.ceil(1 / 2 * image_size) - 2) | |
max_diag = int(image_size - 3) | |
max_basic = int(np.ceil(1 / 2 * image_size) - 1) | |
# Adds different density values | |
for i in range(len(densities)): | |
for j in range(1, max_basic): # basic box loop, always want a border | |
basic_box_thickness = j | |
array_1 = basic_box_array(image_size, basic_box_thickness) | |
if np.unique([array_1]).all() > 0: # Checks if there is a solid figure | |
break | |
for k in range(0, max_vert): | |
hamburger_box_thickness = k | |
array_2 = hamburger_array(image_size, hamburger_box_thickness) + array_1 | |
array_2 =np.array(array_2 > 0, dtype=int) # Keep all values 0/1 | |
if np.unique([array_2]).all() > 0: | |
break | |
for l in range(0, max_vert): | |
hot_dog_box_thickness = l | |
array_3 = hot_dog_array(image_size, hot_dog_box_thickness) + array_2 | |
array_3 = np.array(array_3 > 0, dtype=int) | |
if np.unique([array_3]).all() > 0: | |
break | |
for m in range(0, max_diag): | |
forward_slash_box_thickness = m | |
array_4 = forward_slash_array(image_size, forward_slash_box_thickness) + array_3 | |
array_4 = np.array(array_4 > 0, dtype=int) | |
if np.unique([array_4]).all() > 0: | |
break | |
for n in range(0, max_diag): | |
back_slash_box_thickness = n | |
array_5 = back_slash_array(image_size, back_slash_box_thickness) + array_4 | |
array_5 = np.array(array_5 > 0, dtype=int) | |
if np.unique([array_5]).all() > 0: | |
break | |
the_tuple = (array_5*densities[i], densities[i], basic_box_thickness, | |
forward_slash_box_thickness, back_slash_box_thickness, | |
hot_dog_box_thickness, hamburger_box_thickness) | |
matrix.append(the_tuple) | |
# matrix = [] | |
# base_shapes = [] | |
# | |
# | |
# | |
# | |
# | |
# density_1 = [] | |
# for function in shapes: # Create an array of the base shapes | |
# thickness = 0 | |
# Array = function(thickness, 1, image_size) | |
# # density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) # Array, Shape, Density, Thickness | |
# # base_shapes.append(density_1_tuple) | |
# | |
# density_1 = np.append(density_1,(np.array([Array, str(function.__name__), 1, thickness])), axis=1) # Array, Shape, Density, Thickness | |
# # Add one to the thickness of the previous array | |
# # for j in range(image_size): | |
# while (np.where((Array == float(0)))[0] > 0).any(): | |
# # Checks if there are any 0's left in the array to append | |
# # if (np.where((Array == float(0)))[0] > 0).any(): | |
# # density_1.append(density_1_tuple, axis=0) | |
# thickness += 1 | |
# if np.shape(density_1) == (4,): | |
# Array = add_pixels(density_1[0], 1) # will add 1 pixel to each previous array, rather than adding multiple and having to loop | |
# | |
# else: | |
# print(np.shape(density_1)) | |
# print(density_1[-1][0]) | |
# Array = add_pixels(density_1[-1][0], 1) | |
# # print(np.shape(Array)) | |
# density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) | |
# # else: # Prevents solids shapes from being appended to the array | |
# # break | |
# density_1 = np.vstack((density_1, density_1_tuple)) | |
# | |
# matrix = [] | |
# # print(np.shape(density_1[0])) | |
# # print(density_1[:][0]) | |
# for i in range(len(densities)): | |
# some = np.multiply(density_1[:][0],densities[i]) #,density_1[:1]) | |
# # print(np.shape(some)) | |
# matrix.append(tuple(some)) | |
# | |
# | |
# # # Adds different density values | |
# # for i in range(len(densities)): | |
# # # Loops through the possible thickness values | |
# # for j in range(image_size): # Adds additional Pixels | |
# # thickness = j | |
# # Array = (function(thickness, densities[i], image_size)) | |
# # | |
# # # Checks if there are any 0's left in the array to append | |
# # if (np.where((Array == float(0)))[0] > 0).any(): | |
# # the_tuple = (Array, str(function.__name__), densities[i], thickness) | |
# # matrix.append(the_tuple) | |
# # | |
# # # Prevents solids shapes from being appended to the array | |
# # else: | |
# # break | |
return matrix | |
######################################################################################################################## | |
# # Testing | |
# image_size = 9 | |
# densities = [1] | |
# shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box, | |
# back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box, | |
# x_hot_dog_box, x_plus_box] | |
# | |
# boxes = make_boxes(image_size, densities, shapes) | |
# | |
# # print(np.shape(boxes)) | |
# desired_label = 'basic_box' | |
# desired_density = 1 | |
# desired_thickness = 0 | |
# | |
# box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3] | |
# # print(np.shape(box_arrays)) | |
# # print(np.shape(box_shape)) | |
# # print(np.shape(box_density)) | |
# | |
# indices = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness] | |
# plt.imshow(box_arrays[indices[0]]) | |
# plt.show() | |
######################################################################################################################## | |
# Testing | |
image_size = 9 | |
densities = [1] | |
boxes = make_boxes(image_size, densities) | |
desired_density = 1 | |
# desired_thickness = 0 | |
desired_basic_box_thickness =1 | |
desired_forward_slash_box_thickness=2 | |
desired_back_slash_box_thickness=0 | |
desired_hot_dog_box_thickness=0 | |
desired_hamburger_box_thickness=0 | |
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\ | |
= list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6] | |
# print(np.shape(box_arrays)) | |
# print(np.shape(box_shape)) | |
# print(np.shape(box_density)) | |
indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density | |
and basic_box_thickness[i] == desired_basic_box_thickness | |
and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness | |
and back_slash_box_thickness[i] == desired_back_slash_box_thickness | |
and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness | |
and hamburger_box_thickness[i] == desired_hamburger_box_thickness] | |
plt.imshow(box_arrays[indices[0]]) | |
plt.show() | |