AddLat2D / Data_Generation /Dataset_Generation_Functions.py
marta-marta's picture
Created a strut based dataset generator.
07b21c4
raw
history blame
9.25 kB
import numpy as np
# from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \
# back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \
# x_hamburger_box, x_hot_dog_box, x_plus_box
from Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array
import matplotlib.pyplot as plt
########################################################################################################################
# Make the data using all the code in Shape_Generation_Functions.py
def make_boxes(image_size, densities):
"""
:param image_size: [int] - the pixel height and width of the generated arrays
:param densities: [list] - of the values of each of the active pixels in each shape
:param shapes: [list] - of the various shapes desired for the dataset
:return: [list[tuple]] - [Array, Density, Thickness, Shape]
"""
matrix = []
#
# for function in shapes: # Adds different types of shapes
#
# # Adds different density values
# for i in range(len(densities)):
# # Loops through the possible thickness values
# for j in range(image_size): # Adds additional Pixels
# thickness = j
# Array = (function(thickness, densities[i], image_size))
#
# # Checks if there are any 0's left in the array to append
# if (np.where((Array == float(0)))[0] > 0).any():
# the_tuple = (Array, str(function.__name__), densities[i], thickness)
# matrix.append(the_tuple)
#
# # Prevents solids shapes from being appended to the array
# else:
# break
# Establish the maximum thickness for each type of strut
max_vert = int(np.ceil(1 / 2 * image_size) - 2)
max_diag = int(image_size - 3)
max_basic = int(np.ceil(1 / 2 * image_size) - 1)
# Adds different density values
for i in range(len(densities)):
for j in range(1, max_basic): # basic box loop, always want a border
basic_box_thickness = j
array_1 = basic_box_array(image_size, basic_box_thickness)
if np.unique([array_1]).all() > 0: # Checks if there is a solid figure
break
for k in range(0, max_vert):
hamburger_box_thickness = k
array_2 = hamburger_array(image_size, hamburger_box_thickness) + array_1
array_2 =np.array(array_2 > 0, dtype=int) # Keep all values 0/1
if np.unique([array_2]).all() > 0:
break
for l in range(0, max_vert):
hot_dog_box_thickness = l
array_3 = hot_dog_array(image_size, hot_dog_box_thickness) + array_2
array_3 = np.array(array_3 > 0, dtype=int)
if np.unique([array_3]).all() > 0:
break
for m in range(0, max_diag):
forward_slash_box_thickness = m
array_4 = forward_slash_array(image_size, forward_slash_box_thickness) + array_3
array_4 = np.array(array_4 > 0, dtype=int)
if np.unique([array_4]).all() > 0:
break
for n in range(0, max_diag):
back_slash_box_thickness = n
array_5 = back_slash_array(image_size, back_slash_box_thickness) + array_4
array_5 = np.array(array_5 > 0, dtype=int)
if np.unique([array_5]).all() > 0:
break
the_tuple = (array_5*densities[i], densities[i], basic_box_thickness,
forward_slash_box_thickness, back_slash_box_thickness,
hot_dog_box_thickness, hamburger_box_thickness)
matrix.append(the_tuple)
# matrix = []
# base_shapes = []
#
#
#
#
#
# density_1 = []
# for function in shapes: # Create an array of the base shapes
# thickness = 0
# Array = function(thickness, 1, image_size)
# # density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) # Array, Shape, Density, Thickness
# # base_shapes.append(density_1_tuple)
#
# density_1 = np.append(density_1,(np.array([Array, str(function.__name__), 1, thickness])), axis=1) # Array, Shape, Density, Thickness
# # Add one to the thickness of the previous array
# # for j in range(image_size):
# while (np.where((Array == float(0)))[0] > 0).any():
# # Checks if there are any 0's left in the array to append
# # if (np.where((Array == float(0)))[0] > 0).any():
# # density_1.append(density_1_tuple, axis=0)
# thickness += 1
# if np.shape(density_1) == (4,):
# Array = add_pixels(density_1[0], 1) # will add 1 pixel to each previous array, rather than adding multiple and having to loop
#
# else:
# print(np.shape(density_1))
# print(density_1[-1][0])
# Array = add_pixels(density_1[-1][0], 1)
# # print(np.shape(Array))
# density_1_tuple = np.array([Array, str(function.__name__), 1, thickness])
# # else: # Prevents solids shapes from being appended to the array
# # break
# density_1 = np.vstack((density_1, density_1_tuple))
#
# matrix = []
# # print(np.shape(density_1[0]))
# # print(density_1[:][0])
# for i in range(len(densities)):
# some = np.multiply(density_1[:][0],densities[i]) #,density_1[:1])
# # print(np.shape(some))
# matrix.append(tuple(some))
#
#
# # # Adds different density values
# # for i in range(len(densities)):
# # # Loops through the possible thickness values
# # for j in range(image_size): # Adds additional Pixels
# # thickness = j
# # Array = (function(thickness, densities[i], image_size))
# #
# # # Checks if there are any 0's left in the array to append
# # if (np.where((Array == float(0)))[0] > 0).any():
# # the_tuple = (Array, str(function.__name__), densities[i], thickness)
# # matrix.append(the_tuple)
# #
# # # Prevents solids shapes from being appended to the array
# # else:
# # break
return matrix
########################################################################################################################
# # Testing
# image_size = 9
# densities = [1]
# shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
# back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
# x_hot_dog_box, x_plus_box]
#
# boxes = make_boxes(image_size, densities, shapes)
#
# # print(np.shape(boxes))
# desired_label = 'basic_box'
# desired_density = 1
# desired_thickness = 0
#
# box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]
# # print(np.shape(box_arrays))
# # print(np.shape(box_shape))
# # print(np.shape(box_density))
#
# indices = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
# plt.imshow(box_arrays[indices[0]])
# plt.show()
########################################################################################################################
# Testing
image_size = 9
densities = [1]
boxes = make_boxes(image_size, densities)
desired_density = 1
# desired_thickness = 0
desired_basic_box_thickness =1
desired_forward_slash_box_thickness=2
desired_back_slash_box_thickness=0
desired_hot_dog_box_thickness=0
desired_hamburger_box_thickness=0
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
= list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
# print(np.shape(box_arrays))
# print(np.shape(box_shape))
# print(np.shape(box_density))
indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density
and basic_box_thickness[i] == desired_basic_box_thickness
and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness
and back_slash_box_thickness[i] == desired_back_slash_box_thickness
and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness
and hamburger_box_thickness[i] == desired_hamburger_box_thickness]
plt.imshow(box_arrays[indices[0]])
plt.show()