Commit
·
07b21c4
1
Parent(s):
5b65c9e
Created a strut based dataset generator.
Browse files
Data_Generation/Dataset_Generation_Functions.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import numpy as np
|
2 |
|
3 |
-
from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \
|
4 |
-
|
5 |
-
|
6 |
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
-
|
10 |
|
11 |
|
12 |
########################################################################################################################
|
13 |
# Make the data using all the code in Shape_Generation_Functions.py
|
14 |
-
def make_boxes(image_size, densities
|
15 |
"""
|
16 |
:param image_size: [int] - the pixel height and width of the generated arrays
|
17 |
:param densities: [list] - of the values of each of the active pixels in each shape
|
@@ -19,7 +20,7 @@ def make_boxes(image_size, densities, shapes):
|
|
19 |
:return: [list[tuple]] - [Array, Density, Thickness, Shape]
|
20 |
"""
|
21 |
|
22 |
-
|
23 |
#
|
24 |
# for function in shapes: # Adds different types of shapes
|
25 |
#
|
@@ -38,83 +39,165 @@ def make_boxes(image_size, densities, shapes):
|
|
38 |
# # Prevents solids shapes from being appended to the array
|
39 |
# else:
|
40 |
# break
|
41 |
-
matrix = []
|
42 |
-
base_shapes = []
|
43 |
-
density_1 = []
|
44 |
-
for function in shapes: # Create an array of the base shapes
|
45 |
-
thickness = 0
|
46 |
-
Array = function(thickness, 1, image_size)
|
47 |
-
# density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) # Array, Shape, Density, Thickness
|
48 |
-
# base_shapes.append(density_1_tuple)
|
49 |
-
|
50 |
-
density_1 = np.append(density_1,(np.array([Array, str(function.__name__), 1, thickness])), axis=1) # Array, Shape, Density, Thickness
|
51 |
-
# Add one to the thickness of the previous array
|
52 |
-
# for j in range(image_size):
|
53 |
-
while (np.where((Array == float(0)))[0] > 0).any():
|
54 |
-
# Checks if there are any 0's left in the array to append
|
55 |
-
# if (np.where((Array == float(0)))[0] > 0).any():
|
56 |
-
# density_1.append(density_1_tuple, axis=0)
|
57 |
-
thickness += 1
|
58 |
-
if np.shape(density_1) == (4,):
|
59 |
-
Array = add_pixels(density_1[0], 1) # will add 1 pixel to each previous array, rather than adding multiple and having to loop
|
60 |
-
|
61 |
-
else:
|
62 |
-
print(np.shape(density_1))
|
63 |
-
print(density_1[-1][0])
|
64 |
-
Array = add_pixels(density_1[-1][0], 1)
|
65 |
-
# print(np.shape(Array))
|
66 |
-
density_1_tuple = np.array([Array, str(function.__name__), 1, thickness])
|
67 |
-
# else: # Prevents solids shapes from being appended to the array
|
68 |
-
# break
|
69 |
-
density_1 = np.vstack((density_1, density_1_tuple))
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
for i in range(len(densities)):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return matrix
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
########################################################################################################################
|
99 |
# Testing
|
100 |
image_size = 9
|
101 |
densities = [1]
|
102 |
-
shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
|
103 |
-
back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
|
104 |
-
x_hot_dog_box, x_plus_box]
|
105 |
|
106 |
-
boxes = make_boxes(image_size, densities
|
107 |
|
108 |
-
# print(np.shape(boxes))
|
109 |
-
desired_label = 'basic_box'
|
110 |
desired_density = 1
|
111 |
-
desired_thickness = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
box_arrays,
|
|
|
114 |
# print(np.shape(box_arrays))
|
115 |
# print(np.shape(box_shape))
|
116 |
# print(np.shape(box_density))
|
117 |
|
118 |
-
indices = [i for i in range(len(box_arrays)) if
|
|
|
|
|
|
|
|
|
|
|
119 |
plt.imshow(box_arrays[indices[0]])
|
120 |
plt.show()
|
|
|
1 |
import numpy as np
|
2 |
|
3 |
+
# from Data_Generation.Shape_Generation_Functions import basic_box, diagonal_box_split, horizontal_vertical_box_split, \
|
4 |
+
# back_slash_box, forward_slash_box, back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, \
|
5 |
+
# x_hamburger_box, x_hot_dog_box, x_plus_box
|
6 |
|
7 |
+
from Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
+
|
11 |
|
12 |
|
13 |
########################################################################################################################
|
14 |
# Make the data using all the code in Shape_Generation_Functions.py
|
15 |
+
def make_boxes(image_size, densities):
|
16 |
"""
|
17 |
:param image_size: [int] - the pixel height and width of the generated arrays
|
18 |
:param densities: [list] - of the values of each of the active pixels in each shape
|
|
|
20 |
:return: [list[tuple]] - [Array, Density, Thickness, Shape]
|
21 |
"""
|
22 |
|
23 |
+
matrix = []
|
24 |
#
|
25 |
# for function in shapes: # Adds different types of shapes
|
26 |
#
|
|
|
39 |
# # Prevents solids shapes from being appended to the array
|
40 |
# else:
|
41 |
# break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Establish the maximum thickness for each type of strut
|
44 |
+
max_vert = int(np.ceil(1 / 2 * image_size) - 2)
|
45 |
+
max_diag = int(image_size - 3)
|
46 |
+
max_basic = int(np.ceil(1 / 2 * image_size) - 1)
|
47 |
+
|
48 |
+
# Adds different density values
|
49 |
for i in range(len(densities)):
|
50 |
+
for j in range(1, max_basic): # basic box loop, always want a border
|
51 |
+
basic_box_thickness = j
|
52 |
+
array_1 = basic_box_array(image_size, basic_box_thickness)
|
53 |
+
if np.unique([array_1]).all() > 0: # Checks if there is a solid figure
|
54 |
+
break
|
55 |
+
|
56 |
+
for k in range(0, max_vert):
|
57 |
+
hamburger_box_thickness = k
|
58 |
+
array_2 = hamburger_array(image_size, hamburger_box_thickness) + array_1
|
59 |
+
array_2 =np.array(array_2 > 0, dtype=int) # Keep all values 0/1
|
60 |
+
if np.unique([array_2]).all() > 0:
|
61 |
+
break
|
62 |
+
|
63 |
+
for l in range(0, max_vert):
|
64 |
+
hot_dog_box_thickness = l
|
65 |
+
array_3 = hot_dog_array(image_size, hot_dog_box_thickness) + array_2
|
66 |
+
array_3 = np.array(array_3 > 0, dtype=int)
|
67 |
+
if np.unique([array_3]).all() > 0:
|
68 |
+
break
|
69 |
+
|
70 |
+
for m in range(0, max_diag):
|
71 |
+
forward_slash_box_thickness = m
|
72 |
+
array_4 = forward_slash_array(image_size, forward_slash_box_thickness) + array_3
|
73 |
+
array_4 = np.array(array_4 > 0, dtype=int)
|
74 |
+
if np.unique([array_4]).all() > 0:
|
75 |
+
break
|
76 |
+
|
77 |
+
for n in range(0, max_diag):
|
78 |
+
back_slash_box_thickness = n
|
79 |
+
array_5 = back_slash_array(image_size, back_slash_box_thickness) + array_4
|
80 |
+
array_5 = np.array(array_5 > 0, dtype=int)
|
81 |
+
if np.unique([array_5]).all() > 0:
|
82 |
+
break
|
83 |
+
the_tuple = (array_5*densities[i], densities[i], basic_box_thickness,
|
84 |
+
forward_slash_box_thickness, back_slash_box_thickness,
|
85 |
+
hot_dog_box_thickness, hamburger_box_thickness)
|
86 |
+
matrix.append(the_tuple)
|
87 |
+
|
88 |
+
# matrix = []
|
89 |
+
# base_shapes = []
|
90 |
+
#
|
91 |
+
#
|
92 |
+
#
|
93 |
+
#
|
94 |
+
#
|
95 |
+
# density_1 = []
|
96 |
+
# for function in shapes: # Create an array of the base shapes
|
97 |
+
# thickness = 0
|
98 |
+
# Array = function(thickness, 1, image_size)
|
99 |
+
# # density_1_tuple = np.array([Array, str(function.__name__), 1, thickness]) # Array, Shape, Density, Thickness
|
100 |
+
# # base_shapes.append(density_1_tuple)
|
101 |
+
#
|
102 |
+
# density_1 = np.append(density_1,(np.array([Array, str(function.__name__), 1, thickness])), axis=1) # Array, Shape, Density, Thickness
|
103 |
+
# # Add one to the thickness of the previous array
|
104 |
+
# # for j in range(image_size):
|
105 |
+
# while (np.where((Array == float(0)))[0] > 0).any():
|
106 |
+
# # Checks if there are any 0's left in the array to append
|
107 |
+
# # if (np.where((Array == float(0)))[0] > 0).any():
|
108 |
+
# # density_1.append(density_1_tuple, axis=0)
|
109 |
+
# thickness += 1
|
110 |
+
# if np.shape(density_1) == (4,):
|
111 |
+
# Array = add_pixels(density_1[0], 1) # will add 1 pixel to each previous array, rather than adding multiple and having to loop
|
112 |
+
#
|
113 |
+
# else:
|
114 |
+
# print(np.shape(density_1))
|
115 |
+
# print(density_1[-1][0])
|
116 |
+
# Array = add_pixels(density_1[-1][0], 1)
|
117 |
+
# # print(np.shape(Array))
|
118 |
+
# density_1_tuple = np.array([Array, str(function.__name__), 1, thickness])
|
119 |
+
# # else: # Prevents solids shapes from being appended to the array
|
120 |
+
# # break
|
121 |
+
# density_1 = np.vstack((density_1, density_1_tuple))
|
122 |
+
#
|
123 |
+
# matrix = []
|
124 |
+
# # print(np.shape(density_1[0]))
|
125 |
+
# # print(density_1[:][0])
|
126 |
+
# for i in range(len(densities)):
|
127 |
+
# some = np.multiply(density_1[:][0],densities[i]) #,density_1[:1])
|
128 |
+
# # print(np.shape(some))
|
129 |
+
# matrix.append(tuple(some))
|
130 |
+
#
|
131 |
+
#
|
132 |
+
# # # Adds different density values
|
133 |
+
# # for i in range(len(densities)):
|
134 |
+
# # # Loops through the possible thickness values
|
135 |
+
# # for j in range(image_size): # Adds additional Pixels
|
136 |
+
# # thickness = j
|
137 |
+
# # Array = (function(thickness, densities[i], image_size))
|
138 |
+
# #
|
139 |
+
# # # Checks if there are any 0's left in the array to append
|
140 |
+
# # if (np.where((Array == float(0)))[0] > 0).any():
|
141 |
+
# # the_tuple = (Array, str(function.__name__), densities[i], thickness)
|
142 |
+
# # matrix.append(the_tuple)
|
143 |
+
# #
|
144 |
+
# # # Prevents solids shapes from being appended to the array
|
145 |
+
# # else:
|
146 |
+
# # break
|
147 |
return matrix
|
148 |
|
149 |
|
150 |
+
########################################################################################################################
|
151 |
+
# # Testing
|
152 |
+
# image_size = 9
|
153 |
+
# densities = [1]
|
154 |
+
# shapes = [basic_box, diagonal_box_split, horizontal_vertical_box_split, back_slash_box, forward_slash_box,
|
155 |
+
# back_slash_plus_box, forward_slash_plus_box, hot_dog_box, hamburger_box, x_hamburger_box,
|
156 |
+
# x_hot_dog_box, x_plus_box]
|
157 |
+
#
|
158 |
+
# boxes = make_boxes(image_size, densities, shapes)
|
159 |
+
#
|
160 |
+
# # print(np.shape(boxes))
|
161 |
+
# desired_label = 'basic_box'
|
162 |
+
# desired_density = 1
|
163 |
+
# desired_thickness = 0
|
164 |
+
#
|
165 |
+
# box_arrays, box_shape, box_density, box_thickness, = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3]
|
166 |
+
# # print(np.shape(box_arrays))
|
167 |
+
# # print(np.shape(box_shape))
|
168 |
+
# # print(np.shape(box_density))
|
169 |
+
#
|
170 |
+
# indices = [i for i in range(len(box_arrays)) if box_shape[i] == desired_label and box_density[i] == desired_density and box_thickness[i] == desired_thickness]
|
171 |
+
# plt.imshow(box_arrays[indices[0]])
|
172 |
+
# plt.show()
|
173 |
########################################################################################################################
|
174 |
# Testing
|
175 |
image_size = 9
|
176 |
densities = [1]
|
|
|
|
|
|
|
177 |
|
178 |
+
boxes = make_boxes(image_size, densities)
|
179 |
|
|
|
|
|
180 |
desired_density = 1
|
181 |
+
# desired_thickness = 0
|
182 |
+
|
183 |
+
desired_basic_box_thickness =1
|
184 |
+
desired_forward_slash_box_thickness=2
|
185 |
+
desired_back_slash_box_thickness=0
|
186 |
+
desired_hot_dog_box_thickness=0
|
187 |
+
desired_hamburger_box_thickness=0
|
188 |
+
|
189 |
|
190 |
+
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
|
191 |
+
= list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
|
192 |
# print(np.shape(box_arrays))
|
193 |
# print(np.shape(box_shape))
|
194 |
# print(np.shape(box_density))
|
195 |
|
196 |
+
indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_density
|
197 |
+
and basic_box_thickness[i] == desired_basic_box_thickness
|
198 |
+
and forward_slash_box_thickness[i] == desired_forward_slash_box_thickness
|
199 |
+
and back_slash_box_thickness[i] == desired_back_slash_box_thickness
|
200 |
+
and hot_dog_box_thickness[i] == desired_hot_dog_box_thickness
|
201 |
+
and hamburger_box_thickness[i] == desired_hamburger_box_thickness]
|
202 |
plt.imshow(box_arrays[indices[0]])
|
203 |
plt.show()
|