Spaces:
Runtime error
Runtime error
import re | |
import numpy as np | |
import itertools | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from sentence_transformers import SentenceTransformer | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
class KeywordExtraction: | |
def __init__(self, n_gram_range=(1, 1), stop_words='english', model_name='distilbert-base-nli-mean-tokens'): | |
self.n_gram_range = n_gram_range | |
self.stop_words = stop_words | |
self.model_name = model_name | |
self.model = SentenceTransformer(self.model_name) | |
def __call__(self, doc, top_n=5, diversity=('mmr', 0.7)): | |
doc_embedding = self.get_document_embeddings(doc) | |
candidates = self.get_candidates(doc) | |
candidate_embeddings = self.get_candidate_embeddings(candidates) | |
try: | |
if diversity[0] == 'mmr': | |
# print('using maximal marginal relevance method...') | |
return self.maximal_marginal_relevance(doc_embedding, | |
candidate_embeddings, | |
candidates, | |
top_n=top_n, | |
diversity=diversity[1]) | |
elif diversity[0] == 'mss': | |
# print('using max sum similarity method...') | |
return self.max_sum_similarity(doc_embedding, | |
candidate_embeddings, | |
candidates, | |
top_n=top_n, | |
nr_candidates=diversity[1]) | |
else: | |
# print('using default method...') | |
return self.get_keywords(doc_embedding, candidate_embeddings, candidates, top_n) | |
except Exception as e: | |
print(e) | |
def get_candidates(self, doc): | |
# Extract candidate words/phrases | |
count = CountVectorizer(ngram_range=self.n_gram_range, stop_words=self.stop_words).fit([doc]) | |
return count.get_feature_names_out() | |
def get_candidate_embeddings(self, candidates): | |
return self.model.encode(candidates) | |
def get_document_embeddings(self, doc): | |
return self.model.encode([doc]) | |
def get_keywords(self, doc_embedding, candidate_embeddings, candidates, top_n=5): | |
distances = cosine_similarity(doc_embedding, candidate_embeddings) | |
keywords = [candidates[index] for index in distances.argsort()[0][-top_n:]] | |
return keywords | |
def max_sum_similarity(self, doc_embedding, candidate_embeddings, candidates, top_n, nr_candidates): | |
# Calculate distances and extract keywords | |
distances = cosine_similarity(doc_embedding, candidate_embeddings) | |
distances_candidates = cosine_similarity(candidate_embeddings, | |
candidate_embeddings) | |
# Get top_n words as candidates based on cosine similarity | |
words_idx = list(distances.argsort()[0][-nr_candidates:]) | |
words_vals = [candidates[index] for index in words_idx] | |
distances_candidates = distances_candidates[np.ix_(words_idx, words_idx)] | |
# Calculate the combination of words that are the least similar to each other | |
min_sim = np.inf | |
candidate = None | |
for combination in itertools.combinations(range(len(words_idx)), top_n): | |
sim = sum([distances_candidates[i][j] for i in combination for j in combination if i != j]) | |
if sim < min_sim: | |
candidate = combination | |
min_sim = sim | |
return [words_vals[idx] for idx in candidate] | |
def maximal_marginal_relevance(self, doc_embedding, word_embeddings, words, top_n, diversity): | |
# Extract similarity within words, and between words and the document | |
word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding) | |
word_similarity = cosine_similarity(word_embeddings) | |
# Initialize candidates and already choose best keyword/keyphras | |
keywords_idx = [np.argmax(word_doc_similarity)] | |
candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]] | |
for _ in range(top_n - 1): | |
# Extract similarities within candidates and | |
# between candidates and selected keywords/phrases | |
candidate_similarities = word_doc_similarity[candidates_idx, :] | |
target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1) | |
# Calculate MMR | |
mmr = (1-diversity) * candidate_similarities - diversity * target_similarities.reshape(-1, 1) | |
mmr_idx = candidates_idx[np.argmax(mmr)] | |
# Update keywords & candidates | |
keywords_idx.append(mmr_idx) | |
candidates_idx.remove(mmr_idx) | |
return [words[idx] for idx in keywords_idx] | |
def regex(phrase, m=0, n=3): | |
strng = "([\s]*[a-zA-Z0-9]*[\s]*){%d,%d}" % (m,n) | |
return strng.join(phrase.split()) | |
def remove_square_brackets(text): | |
return re.sub('\[[0-9]+\]', '', text) | |
def remove_extra_spaces(text): | |
return re.sub('[\s]{2,}', ' ', text) | |
def preprocess_text(text): | |
text = re.sub('\[[0-9]+\]', '', text) | |
text = re.sub('[\s]{2,}', ' ', text) | |
text = text.strip() | |
return text | |
def sent_tokenize(text): | |
sents = text.split('.') | |
sents = [s.strip() for s in sents if len(s)>0] | |
return sents | |
def get_key_sentences(text, top_n=5, diversity=('mmr', 0.6)): | |
kw_extractor = KeywordExtraction(n_gram_range=(1,3)) | |
text = preprocess_text(text) | |
sentences = sent_tokenize(text) | |
key_phrases = kw_extractor(text, top_n=top_n, diversity=diversity) | |
if key_phrases is None: | |
return None | |
key_sents = dict() | |
for phrase in key_phrases: | |
found = False | |
for i, sent in enumerate(sentences): | |
if re.search(regex(phrase), sent): | |
found = True | |
if i not in key_sents: | |
key_sents[i] = sent | |
if not found: | |
print(f'The phrase "{phrase}" was not matched!') | |
return key_sents | |
class ParaphraseModel: | |
def __init__(self, model_name="Vamsi/T5_Paraphrase_Paws"): | |
self.model_name = model_name | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def __call__(self, inputs, top_k=200, top_p=0.95, num_sequences=5): | |
text = self.prepare_list_input(inputs) if type(inputs) == type([]) else f"paraphrase: {inputs} </s>" | |
encoding = self.tokenizer.batch_encode_plus(text, pad_to_max_length=True, return_tensors="pt") | |
input_ids = encoding["input_ids"].to(self.device) | |
attention_masks = encoding["attention_mask"].to(self.device) | |
outputs = self.model.generate( | |
input_ids=input_ids, attention_mask=attention_masks, | |
max_length=256, | |
do_sample=True, | |
top_k=top_k, | |
top_p=top_p, | |
early_stopping=True, | |
num_return_sequences=num_sequences | |
) | |
lines = [] | |
for output in outputs: | |
line = self.tokenizer.decode(output, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
lines.append(line) | |
return lines | |
def prepare_list_input(self, lst): | |
sentences = [] | |
for sent in lst: | |
sentences.append(f"paraphrase: {sent} </s>") | |
return sentences | |