Spaces:
Runtime error
Runtime error
File size: 7,845 Bytes
dc66d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import re
import numpy as np
import itertools
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
class KeywordExtraction:
def __init__(self, n_gram_range=(1, 1), stop_words='english', model_name='distilbert-base-nli-mean-tokens'):
self.n_gram_range = n_gram_range
self.stop_words = stop_words
self.model_name = model_name
self.model = SentenceTransformer(self.model_name)
def __call__(self, doc, top_n=5, diversity=('mmr', 0.7)):
doc_embedding = self.get_document_embeddings(doc)
candidates = self.get_candidates(doc)
candidate_embeddings = self.get_candidate_embeddings(candidates)
try:
if diversity[0] == 'mmr':
# print('using maximal marginal relevance method...')
return self.maximal_marginal_relevance(doc_embedding,
candidate_embeddings,
candidates,
top_n=top_n,
diversity=diversity[1])
elif diversity[0] == 'mss':
# print('using max sum similarity method...')
return self.max_sum_similarity(doc_embedding,
candidate_embeddings,
candidates,
top_n=top_n,
nr_candidates=diversity[1])
else:
# print('using default method...')
return self.get_keywords(doc_embedding, candidate_embeddings, candidates, top_n)
except Exception as e:
print(e)
def get_candidates(self, doc):
# Extract candidate words/phrases
count = CountVectorizer(ngram_range=self.n_gram_range, stop_words=self.stop_words).fit([doc])
return count.get_feature_names_out()
def get_candidate_embeddings(self, candidates):
return self.model.encode(candidates)
def get_document_embeddings(self, doc):
return self.model.encode([doc])
def get_keywords(self, doc_embedding, candidate_embeddings, candidates, top_n=5):
distances = cosine_similarity(doc_embedding, candidate_embeddings)
keywords = [candidates[index] for index in distances.argsort()[0][-top_n:]]
return keywords
def max_sum_similarity(self, doc_embedding, candidate_embeddings, candidates, top_n, nr_candidates):
# Calculate distances and extract keywords
distances = cosine_similarity(doc_embedding, candidate_embeddings)
distances_candidates = cosine_similarity(candidate_embeddings,
candidate_embeddings)
# Get top_n words as candidates based on cosine similarity
words_idx = list(distances.argsort()[0][-nr_candidates:])
words_vals = [candidates[index] for index in words_idx]
distances_candidates = distances_candidates[np.ix_(words_idx, words_idx)]
# Calculate the combination of words that are the least similar to each other
min_sim = np.inf
candidate = None
for combination in itertools.combinations(range(len(words_idx)), top_n):
sim = sum([distances_candidates[i][j] for i in combination for j in combination if i != j])
if sim < min_sim:
candidate = combination
min_sim = sim
return [words_vals[idx] for idx in candidate]
def maximal_marginal_relevance(self, doc_embedding, word_embeddings, words, top_n, diversity):
# Extract similarity within words, and between words and the document
word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)
word_similarity = cosine_similarity(word_embeddings)
# Initialize candidates and already choose best keyword/keyphras
keywords_idx = [np.argmax(word_doc_similarity)]
candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]
for _ in range(top_n - 1):
# Extract similarities within candidates and
# between candidates and selected keywords/phrases
candidate_similarities = word_doc_similarity[candidates_idx, :]
target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)
# Calculate MMR
mmr = (1-diversity) * candidate_similarities - diversity * target_similarities.reshape(-1, 1)
mmr_idx = candidates_idx[np.argmax(mmr)]
# Update keywords & candidates
keywords_idx.append(mmr_idx)
candidates_idx.remove(mmr_idx)
return [words[idx] for idx in keywords_idx]
def regex(phrase, m=0, n=3):
strng = "([\s]*[a-zA-Z0-9]*[\s]*){%d,%d}" % (m,n)
return strng.join(phrase.split())
def remove_square_brackets(text):
return re.sub('\[[0-9]+\]', '', text)
def remove_extra_spaces(text):
return re.sub('[\s]{2,}', ' ', text)
def preprocess_text(text):
text = re.sub('\[[0-9]+\]', '', text)
text = re.sub('[\s]{2,}', ' ', text)
text = text.strip()
return text
def sent_tokenize(text):
sents = text.split('.')
sents = [s.strip() for s in sents if len(s)>0]
return sents
def get_key_sentences(text, top_n=5, diversity=('mmr', 0.6)):
kw_extractor = KeywordExtraction(n_gram_range=(1,3))
text = preprocess_text(text)
sentences = sent_tokenize(text)
key_phrases = kw_extractor(text, top_n=top_n, diversity=diversity)
if key_phrases is None:
return None
key_sents = dict()
for phrase in key_phrases:
found = False
for i, sent in enumerate(sentences):
if re.search(regex(phrase), sent):
found = True
if i not in key_sents:
key_sents[i] = sent
if not found:
print(f'The phrase "{phrase}" was not matched!')
return key_sents
class ParaphraseModel:
def __init__(self, model_name="Vamsi/T5_Paraphrase_Paws"):
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def __call__(self, inputs, top_k=200, top_p=0.95, num_sequences=5):
text = self.prepare_list_input(inputs) if type(inputs) == type([]) else f"paraphrase: {inputs} </s>"
encoding = self.tokenizer.batch_encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids = encoding["input_ids"].to(self.device)
attention_masks = encoding["attention_mask"].to(self.device)
outputs = self.model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=top_k,
top_p=top_p,
early_stopping=True,
num_return_sequences=num_sequences
)
lines = []
for output in outputs:
line = self.tokenizer.decode(output,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
lines.append(line)
return lines
def prepare_list_input(self, lst):
sentences = []
for sent in lst:
sentences.append(f"paraphrase: {sent} </s>")
return sentences
|