cahya's picture
fixed the tokenizer
dd813fc
raw
history blame
6.66 kB
from fastapi import FastAPI, WebSocket
from fastapi.responses import HTMLResponse
from fastapi import Form, Depends, HTTPException, status
from transformers import pipeline, set_seed, AutoConfig, AutoTokenizer, AutoModelForCausalLM
import torch
import os
import time
import re
import json
app = FastAPI()
html = """
<!DOCTYPE html>
<html>
<head>
<title>Chat</title>
</head>
<body>
<h1>WebSocket Chat</h1>
<form action="" onsubmit="sendMessage(event)">
<input type="text" id="messageText" autocomplete="off"/>
<button>Send</button>
</form>
<ul id='messages'>
</ul>
<script>
// var ws = new WebSocket("ws://localhost:8000/api/ws");
var ws = new WebSocket("wss://cahya-indonesian-whisperer.hf.space/api/ws");
ws.onmessage = function(event) {
var messages = document.getElementById('messages')
var message = document.createElement('li')
var content = document.createTextNode(event.data)
message.appendChild(content)
messages.appendChild(message)
};
function sendMessage(event) {
var input = document.getElementById("messageText")
ws.send(input.value)
input.value = ''
event.preventDefault()
}
</script>
</body>
</html>
"""
@app.get("/")
async def get():
return HTMLResponse(html)
@app.get("/api/env")
async def env():
environment_variables = "<h3>Environment Variables</h3>"
for name, value in os.environ.items():
environment_variables += f"{name}: {value}<br>"
return HTMLResponse(environment_variables)
@app.websocket("/api/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_text()
await websocket.send_text(f"Message text was: {data}")
@app.post("/api/indochat/v1")
async def indochat(**kwargs):
return text_generate("indochat-tiny", kwargs)
@app.post("/api/text-generator/v1")
async def text_generate(
model_name: str = Form(default="", description="The model name"),
text: str = Form(default="", description="The Prompt"),
decoding_method: str = Form(default="Sampling", description="Decoding method"),
min_length: int = Form(default=50, description="Minimal length of the generated text"),
max_length: int = Form(default=250, description="Maximal length of the generated text"),
num_beams: int = Form(default=5, description="Beams number"),
top_k: int = Form(default=30, description="The number of highest probability vocabulary tokens to keep "
"for top-k-filtering"),
top_p: float = Form(default=0.95, description="If set to float < 1, only the most probable tokens with "
"probabilities that add up to top_p or higher are kept "
"for generation"),
temperature: float = Form(default=0.5, description="The Temperature of the softmax distribution"),
penalty_alpha: float = Form(default=0.5, description="Penalty alpha"),
repetition_penalty: float = Form(default=1.2, description="Repetition penalty"),
seed: int = Form(default=-1, description="Random Seed"),
max_time: float = Form(default=60.0, description="Maximal time in seconds to generate the text")
):
if seed >= 0:
set_seed(seed)
if decoding_method == "Beam Search":
do_sample = False
penalty_alpha = 0
elif decoding_method == "Sampling":
do_sample = True
penalty_alpha = 0
num_beams = 1
else:
do_sample = False
num_beams = 1
if repetition_penalty == 0.0:
min_penalty = 1.05
max_penalty = 1.5
repetition_penalty = max(min_penalty + (1.0 - temperature) * (max_penalty - min_penalty), 0.8)
prompt = f"User: {text}\nAssistant: "
input_ids = text_generator[model_name]["tokenizer"](prompt, return_tensors='pt').input_ids.to(device)
text_generator[model_name]["model"].eval()
print("Generating text...")
print(f"max_length: {max_length}, do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, "
f"temperature: {temperature}, repetition_penalty: {repetition_penalty}, penalty_alpha: {penalty_alpha}")
time_start = time.time()
sample_outputs = text_generator[model_name]["model"].generate(input_ids,
penalty_alpha=penalty_alpha,
do_sample=do_sample,
num_beams=num_beams,
min_length=min_length,
max_length=max_length,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
max_time=max_time
)
result = text_generator[model_name]["tokenizer"].decode(sample_outputs[0], skip_special_tokens=True)
time_end = time.time()
time_diff = time_end - time_start
print(f"result:\n{result}")
generated_text = result[len(prompt)+1:]
generated_text = generated_text[:generated_text.find("User:")]
return {"generated_text": generated_text, "processing_time": time_diff}
def get_text_generator(model_name: str, device: str = "cpu"):
hf_auth_token = os.getenv("HF_AUTH_TOKEN", False)
print(f"hf_auth_token: {hf_auth_token}")
print(f"Loading model with device: {device}...")
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_auth_token)
model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id,
use_auth_token=hf_auth_token)
model.to(device)
print("Model loaded")
return model, tokenizer
def get_config():
return json.load(open("config.json", "r"))
config = get_config()
device = "cuda" if torch.cuda.is_available() else "cpu"
text_generator = {}
for model_name in config["text-generator"]:
model, tokenizer = get_text_generator(model_name=config["text-generator"][model_name], device=device)
text_generator[model_name] = {
"model": model,
"tokenizer": tokenizer
}