File size: 6,656 Bytes
4964cc6
 
cc1e48d
4ac6ada
cc1e48d
4964cc6
cc1e48d
 
 
4964cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1e48d
bf32a4d
4964cc6
 
 
 
 
 
cc1e48d
bf32a4d
4964cc6
 
 
 
 
 
 
 
4ac6ada
 
 
 
 
 
 
4964cc6
e84c607
 
4964cc6
e84c607
faf39cc
4964cc6
 
 
 
faf39cc
e84c607
faf39cc
e84c607
4964cc6
 
e84c607
 
 
 
 
 
 
 
 
 
 
 
4964cc6
 
 
 
 
4ac6ada
 
4964cc6
 
 
 
4ac6ada
4964cc6
 
e84c607
 
4964cc6
 
 
 
 
 
 
 
dd813fc
4964cc6
 
 
e84c607
030f8db
4964cc6
 
 
 
 
 
 
 
4ac6ada
4964cc6
 
 
 
 
 
 
 
 
 
 
 
4ac6ada
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from fastapi import FastAPI, WebSocket
from fastapi.responses import HTMLResponse
from fastapi import Form, Depends, HTTPException, status
from transformers import pipeline, set_seed, AutoConfig, AutoTokenizer, AutoModelForCausalLM
import torch
import os
import time
import re
import json

app = FastAPI()

html = """
<!DOCTYPE html>
<html>
    <head>
        <title>Chat</title>
    </head>
    <body>
        <h1>WebSocket Chat</h1>
        <form action="" onsubmit="sendMessage(event)">
            <input type="text" id="messageText" autocomplete="off"/>
            <button>Send</button>
        </form>
        <ul id='messages'>
        </ul>
        <script>
            // var ws = new WebSocket("ws://localhost:8000/api/ws");
            var ws = new WebSocket("wss://cahya-indonesian-whisperer.hf.space/api/ws");
            ws.onmessage = function(event) {
                var messages = document.getElementById('messages')
                var message = document.createElement('li')
                var content = document.createTextNode(event.data)
                message.appendChild(content)
                messages.appendChild(message)
            };
            function sendMessage(event) {
                var input = document.getElementById("messageText")
                ws.send(input.value)
                input.value = ''
                event.preventDefault()
            }
        </script>
    </body>
</html>
"""


@app.get("/")
async def get():
    return HTMLResponse(html)


@app.get("/api/env")
async def env():
    environment_variables = "<h3>Environment Variables</h3>"
    for name, value in os.environ.items():
        environment_variables += f"{name}: {value}<br>"
    return HTMLResponse(environment_variables)


@app.websocket("/api/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    while True:
        data = await websocket.receive_text()
        await websocket.send_text(f"Message text was: {data}")


@app.post("/api/indochat/v1")
async def indochat(**kwargs):
    return text_generate("indochat-tiny", kwargs)


@app.post("/api/text-generator/v1")
async def text_generate(
        model_name: str = Form(default="", description="The model name"),
        text: str = Form(default="", description="The Prompt"),
        decoding_method: str = Form(default="Sampling", description="Decoding method"),
        min_length: int = Form(default=50, description="Minimal length of the generated text"),
        max_length: int = Form(default=250, description="Maximal length of the generated text"),
        num_beams: int = Form(default=5, description="Beams number"),
        top_k: int = Form(default=30, description="The number of highest probability vocabulary tokens to keep "
                                                  "for top-k-filtering"),
        top_p: float = Form(default=0.95, description="If set to float < 1, only the most probable tokens with "
                                                      "probabilities that add up to top_p or higher are kept "
                                                      "for generation"),
        temperature: float = Form(default=0.5, description="The Temperature of the softmax distribution"),
        penalty_alpha: float = Form(default=0.5, description="Penalty alpha"),
        repetition_penalty: float = Form(default=1.2, description="Repetition penalty"),
        seed: int = Form(default=-1, description="Random Seed"),
        max_time: float = Form(default=60.0, description="Maximal time in seconds to generate the text")
):
    if seed >= 0:
        set_seed(seed)
    if decoding_method == "Beam Search":
        do_sample = False
        penalty_alpha = 0
    elif decoding_method == "Sampling":
        do_sample = True
        penalty_alpha = 0
        num_beams = 1
    else:
        do_sample = False
        num_beams = 1
    if repetition_penalty == 0.0:
        min_penalty = 1.05
        max_penalty = 1.5
        repetition_penalty = max(min_penalty + (1.0 - temperature) * (max_penalty - min_penalty), 0.8)
    prompt = f"User: {text}\nAssistant: "
    input_ids = text_generator[model_name]["tokenizer"](prompt, return_tensors='pt').input_ids.to(device)
    text_generator[model_name]["model"].eval()
    print("Generating text...")
    print(f"max_length: {max_length}, do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, "
          f"temperature: {temperature}, repetition_penalty: {repetition_penalty}, penalty_alpha: {penalty_alpha}")
    time_start = time.time()
    sample_outputs = text_generator[model_name]["model"].generate(input_ids,
                                    penalty_alpha=penalty_alpha,
                                    do_sample=do_sample,
                                    num_beams=num_beams,
                                    min_length=min_length,
                                    max_length=max_length,
                                    top_k=top_k,
                                    top_p=top_p,
                                    temperature=temperature,
                                    repetition_penalty=repetition_penalty,
                                    num_return_sequences=1,
                                    max_time=max_time
                                    )
    result = text_generator[model_name]["tokenizer"].decode(sample_outputs[0], skip_special_tokens=True)
    time_end = time.time()
    time_diff = time_end - time_start
    print(f"result:\n{result}")
    generated_text = result[len(prompt)+1:]
    generated_text = generated_text[:generated_text.find("User:")]
    return {"generated_text": generated_text, "processing_time": time_diff}


def get_text_generator(model_name: str, device: str = "cpu"):
    hf_auth_token = os.getenv("HF_AUTH_TOKEN", False)
    print(f"hf_auth_token: {hf_auth_token}")
    print(f"Loading model with device: {device}...")
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_auth_token)
    model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id,
                                            use_auth_token=hf_auth_token)
    model.to(device)
    print("Model loaded")
    return model, tokenizer


def get_config():
    return json.load(open("config.json", "r"))


config = get_config()
device = "cuda" if torch.cuda.is_available() else "cpu"
text_generator = {}
for model_name in config["text-generator"]:
    model, tokenizer = get_text_generator(model_name=config["text-generator"][model_name], device=device)
    text_generator[model_name] = {
        "model": model,
        "tokenizer": tokenizer
    }