Spaces:
Sleeping
Sleeping
title: FBeta_Score | |
tags: | |
- evaluate | |
- metric | |
description: Calculate FBeta_Score | |
sdk: gradio | |
sdk_version: 4.37.2 | |
app_file: app.py | |
pinned: false | |
# Metric Card for FBeta_Score | |
## Metric Description | |
*Compute the F-beta score. | |
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. | |
The beta parameter determines the weight of recall in the combined score. beta < 1 lends more weight to precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> +inf only recall).* | |
Note: The default value of Beta is set as 1.5 to calculate the frequently used FBeta 1.5. Please set a different Beta value according to your needs. | |
## How to Use | |
``` python | |
import evaluate | |
fbeta_score = evaluate.load("leslyarun/fbeta_score") | |
results = fbeta_score.compute(references=[0, 1], predictions=[0, 1], beta=1.5) | |
print(results) | |
{'f_beta_score': 1.0} | |
``` | |
## Citation | |
@article{scikit-learn, | |
title={Scikit-learn: Machine Learning in {P}ython}, | |
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
journal={Journal of Machine Learning Research}, | |
volume={12}, | |
pages={2825--2830}, | |
year={2011} | |
## Further References | |
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html#sklearn.metrics.fbeta_score |