File size: 4,269 Bytes
5028f2c
9643b26
 
 
5028f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import spaces
from diffusers import ControlNetModel
from diffusers import StableDiffusionXLControlNetPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
import gradio as gr
from torchvision import transforms 
from controlnet_aux import OpenposeDetector


openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

controlnet = ControlNetModel.from_pretrained(
    "briaai/BRIA-2.3-ControlNet-Pose",
    torch_dtype=torch.float16
).to('cuda')

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "briaai/BRIA-2.3",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    device_map='auto',
    low_cpu_mem_usage=True,
    offload_state_dict=True,
).to('cuda').to(torch.float16)

pipe.scheduler = EulerAncestralDiscreteScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    steps_offset=1
)
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False

def resize_image(image):
    image = image.convert('RGB')
    current_size = image.size
    if current_size[0] > current_size[1]:
        center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
    else:
        center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
    resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
    return resized_image


@spaces.GPU
def generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed):
    generator = torch.Generator("cuda").manual_seed(seed)    
    images = pipe(
    prompt, negative_prompt=negative_prompt, image=grayscale_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
    generator=generator,
    ).images
    return images

@spaces.GPU
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
    
    # resize input_image to 1024x1024
    input_image = resize_image(input_image)
    
    pose_image = openpose(image, include_body=True, include_hand=True, include_face=True)[0]
  
    images = generate_(prompt, negative_prompt, pose_image, num_steps, controlnet_conditioning_scale, seed)

    return [grayscale_image,images[0]]
    
block = gr.Blocks().queue()

with block:
    gr.Markdown("## BRIA 2.3 ControlNet Pose")
    gr.HTML('''
      <p style="margin-bottom: 10px; font-size: 94%">
        This is a demo for ControlNet Pose that using
        <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone. 
        Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
      </p>
    ''')
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
            num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
            controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
            seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
            run_button = gr.Button(value="Run")
            
            
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
    ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

block.launch(debug = True)