TalHach61 commited on
Commit
5028f2c
1 Parent(s): aefeb5f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
3
+ from diffusers.utils import load_image
4
+ from PIL import Image
5
+ import torch
6
+ import numpy as np
7
+ import cv2
8
+ import gradio as gr
9
+ from torchvision import transforms
10
+ from controlnet_aux import OpenposeDetector
11
+
12
+
13
+ openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
14
+
15
+ controlnet = ControlNetModel.from_pretrained(
16
+ "briaai/BRIA-2.3-ControlNet-Pose",
17
+ torch_dtype=torch.float16
18
+ ).to('cuda')
19
+
20
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
21
+ "briaai/BRIA-2.3",
22
+ controlnet=controlnet,
23
+ torch_dtype=torch.float16,
24
+ device_map='auto',
25
+ low_cpu_mem_usage=True,
26
+ offload_state_dict=True,
27
+ ).to('cuda').to(torch.float16)
28
+
29
+ pipe.scheduler = EulerAncestralDiscreteScheduler(
30
+ beta_start=0.00085,
31
+ beta_end=0.012,
32
+ beta_schedule="scaled_linear",
33
+ num_train_timesteps=1000,
34
+ steps_offset=1
35
+ )
36
+ # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
37
+ # pipe.enable_xformers_memory_efficient_attention()
38
+ pipe.force_zeros_for_empty_prompt = False
39
+
40
+ def resize_image(image):
41
+ image = image.convert('RGB')
42
+ current_size = image.size
43
+ if current_size[0] > current_size[1]:
44
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
45
+ else:
46
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
47
+ resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
48
+ return resized_image
49
+
50
+
51
+ @spaces.GPU
52
+ def generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed):
53
+ generator = torch.Generator("cuda").manual_seed(seed)
54
+ images = pipe(
55
+ prompt, negative_prompt=negative_prompt, image=grayscale_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
56
+ generator=generator,
57
+ ).images
58
+ return images
59
+
60
+ @spaces.GPU
61
+ def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
62
+
63
+ # resize input_image to 1024x1024
64
+ input_image = resize_image(input_image)
65
+
66
+ pose_image = openpose(image, include_body=True, include_hand=True, include_face=True)[0]
67
+
68
+ images = generate_(prompt, negative_prompt, pose_image, num_steps, controlnet_conditioning_scale, seed)
69
+
70
+ return [grayscale_image,images[0]]
71
+
72
+ block = gr.Blocks().queue()
73
+
74
+ with block:
75
+ gr.Markdown("## BRIA 2.3 ControlNet Pose")
76
+ gr.HTML('''
77
+ <p style="margin-bottom: 10px; font-size: 94%">
78
+ This is a demo for ControlNet Pose that using
79
+ <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone.
80
+ Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
81
+ </p>
82
+ ''')
83
+ with gr.Row():
84
+ with gr.Column():
85
+ input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
86
+ prompt = gr.Textbox(label="Prompt")
87
+ negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
88
+ num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
89
+ controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
90
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
91
+ run_button = gr.Button(value="Run")
92
+
93
+
94
+ with gr.Column():
95
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
96
+ ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
97
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
98
+
99
+ block.launch(debug = True)