Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import statistics | |
import datasets | |
import evaluate | |
import numpy as np | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of generated time series. | |
shape: (num_generation, num_timesteps, num_features) | |
references: list of reference | |
shape: (num_reference, num_timesteps, num_features) | |
Returns: | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("bowdbeg/matching_series") | |
>>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]]) | |
>>> print(results) | |
{'matchin': 1.0} | |
""" | |
class matching_series(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
} | |
), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
pass | |
def _compute(self, predictions: list | np.ndarray, references: list | np.ndarray, batch_size: None | int = None): | |
""" | |
Compute the scores of the module given the predictions and references | |
Args: | |
predictions: list of generated time series. | |
shape: (num_generation, num_timesteps, num_features) | |
references: list of reference | |
shape: (num_reference, num_timesteps, num_features) | |
batch_size: batch size to use for the computation. If None, the whole dataset is processed at once. | |
Returns: | |
""" | |
predictions = np.array(predictions) | |
references = np.array(references) | |
if predictions.shape[1:] != references.shape[1:]: | |
raise ValueError( | |
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format( | |
predictions.shape[1:], references.shape[1:] | |
) | |
) | |
# at first, convert the inputs to numpy arrays | |
# MSE between predictions and references for all example combinations for each features | |
# shape: (num_generation, num_reference, num_features) | |
if batch_size is not None: | |
mse = np.zeros((len(predictions), len(references), predictions.shape[-1])) | |
# iterate over the predictions and references in batches | |
for i in range(0, len(predictions) + batch_size, batch_size): | |
for j in range(0, len(references) + batch_size, batch_size): | |
mse[i : i + batch_size, j : j + batch_size] = np.mean( | |
(predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2 | |
) | |
else: | |
mse = np.mean((predictions[:, None] - references) ** 2, axis=1) | |
index_mse = mse.diagonal(axis1=0, axis2=1).mean() | |
# matching scores | |
mse_mean = mse.mean(axis=-1) | |
# best match for each generated time series | |
# shape: (num_generation,) | |
best_match = np.argmin(mse_mean, axis=-1) | |
# matching mse | |
# shape: (num_generation,) | |
matching_mse = mse_mean[np.arange(len(best_match)), best_match].mean() | |
# best match for each reference time series | |
# shape: (num_reference,) | |
best_match_inv = np.argmin(mse_mean, axis=0) | |
covered_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean() | |
harmonic_mean = 2 / (1 / matching_mse + 1 / covered_mse) | |
# take matching for each feature and compute metrics for them | |
matching_mse_features = [] | |
covered_mse_features = [] | |
harmonic_mean_features = [] | |
index_mse_features = [] | |
for f in range(predictions.shape[-1]): | |
mse_f = mse[:, :, f] | |
index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean() | |
best_match_f = np.argmin(mse_f, axis=-1) | |
matching_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean() | |
best_match_inv_f = np.argmin(mse_f, axis=0) | |
covered_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean() | |
harmonic_mean_f = 2 / (1 / matching_mse_f + 1 / covered_mse_f) | |
matching_mse_features.append(matching_mse_f) | |
covered_mse_features.append(covered_mse_f) | |
harmonic_mean_features.append(harmonic_mean_f) | |
index_mse_features.append(index_mse_f) | |
macro_matching_mse = statistics.mean(matching_mse_features) | |
macro_covered_mse = statistics.mean(covered_mse_features) | |
macro_harmonic_mean = statistics.mean(harmonic_mean_features) | |
return { | |
"matching_mse": matching_mse, | |
"harmonic_mean": harmonic_mean, | |
"covered_mse": covered_mse, | |
"index_mse": index_mse, | |
"matching_mse_features": matching_mse_features, | |
"harmonic_mean_features": harmonic_mean_features, | |
"covered_mse_features": covered_mse_features, | |
"index_mse_features": index_mse_features, | |
"macro_matching_mse": macro_matching_mse, | |
"macro_covered_mse": macro_covered_mse, | |
"macro_harmonic_mean": macro_harmonic_mean, | |
} | |