File size: 7,421 Bytes
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5bb76d
 
d85d83b
8f3e4ca
 
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
 
 
 
d85d83b
 
 
 
 
8f3e4ca
 
d85d83b
8f3e4ca
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
 
 
 
 
 
d85d83b
 
 
 
8f3e4ca
d85d83b
 
 
 
 
 
8f3e4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5bb76d
 
 
d85d83b
8f3e4ca
 
 
 
 
 
 
 
f5bb76d
 
 
8f3e4ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import statistics

import datasets
import evaluate
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of generated time series.
        shape: (num_generation, num_timesteps, num_features)
    references: list of reference
        shape: (num_reference, num_timesteps, num_features)
Returns:
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("bowdbeg/matching_series")
    >>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]])
    >>> print(results)
    {'matchin': 1.0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class matching_series(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                    "references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        pass

    def _compute(self, predictions: list | np.ndarray, references: list | np.ndarray, batch_size: None | int = None):
        """
        Compute the scores of the module given the predictions and references
        Args:
            predictions: list of generated time series.
                shape: (num_generation, num_timesteps, num_features)
            references: list of reference
                shape: (num_reference, num_timesteps, num_features)
            batch_size: batch size to use for the computation. If None, the whole dataset is processed at once.
        Returns:
        """
        predictions = np.array(predictions)
        references = np.array(references)
        if predictions.shape[1:] != references.shape[1:]:
            raise ValueError(
                "The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
                    predictions.shape[1:], references.shape[1:]
                )
            )

        # at first, convert the inputs to numpy arrays

        # MSE between predictions and references for all example combinations for each features
        # shape: (num_generation, num_reference, num_features)
        if batch_size is not None:
            mse = np.zeros((len(predictions), len(references), predictions.shape[-1]))
            # iterate over the predictions and references in batches
            for i in range(0, len(predictions) + batch_size, batch_size):
                for j in range(0, len(references) + batch_size, batch_size):
                    mse[i : i + batch_size, j : j + batch_size] = np.mean(
                        (predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2
                    )
        else:
            mse = np.mean((predictions[:, None] - references) ** 2, axis=1)

        index_mse = mse.diagonal(axis1=0, axis2=1).mean()

        # matching scores
        mse_mean = mse.mean(axis=-1)
        # best match for each generated time series
        # shape: (num_generation,)
        best_match = np.argmin(mse_mean, axis=-1)

        # matching mse
        # shape: (num_generation,)
        matching_mse = mse_mean[np.arange(len(best_match)), best_match].mean()

        # best match for each reference time series
        # shape: (num_reference,)
        best_match_inv = np.argmin(mse_mean, axis=0)
        covered_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean()

        harmonic_mean = 2 / (1 / matching_mse + 1 / covered_mse)

        # take matching for each feature and compute metrics for them
        matching_mse_features = []
        covered_mse_features = []
        harmonic_mean_features = []
        index_mse_features = []
        for f in range(predictions.shape[-1]):
            mse_f = mse[:, :, f]
            index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean()
            best_match_f = np.argmin(mse_f, axis=-1)
            matching_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean()
            best_match_inv_f = np.argmin(mse_f, axis=0)
            covered_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean()
            harmonic_mean_f = 2 / (1 / matching_mse_f + 1 / covered_mse_f)
            matching_mse_features.append(matching_mse_f)
            covered_mse_features.append(covered_mse_f)
            harmonic_mean_features.append(harmonic_mean_f)
            index_mse_features.append(index_mse_f)
        macro_matching_mse = statistics.mean(matching_mse_features)
        macro_covered_mse = statistics.mean(covered_mse_features)
        macro_harmonic_mean = statistics.mean(harmonic_mean_features)
        return {
            "matching_mse": matching_mse,
            "harmonic_mean": harmonic_mean,
            "covered_mse": covered_mse,
            "index_mse": index_mse,
            "matching_mse_features": matching_mse_features,
            "harmonic_mean_features": harmonic_mean_features,
            "covered_mse_features": covered_mse_features,
            "index_mse_features": index_mse_features,
            "macro_matching_mse": macro_matching_mse,
            "macro_covered_mse": macro_covered_mse,
            "macro_harmonic_mean": macro_harmonic_mean,
        }