Spaces:
Sleeping
Sleeping
import streamlit as st | |
import streamlit.components.v1 as components | |
import base64 | |
# import leafmap.maplibregl as leafmap | |
import leafmap.foliumap as leafmap | |
import altair as alt | |
import ibis | |
from ibis import _ | |
import ibis.selectors as s | |
# urls for main layer | |
ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.pmtiles" | |
# ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet" | |
ca_parquet = "cpad-stats.parquet" #local copy is faster | |
ca_area_acres = 1.014e8 #acres | |
style_choice = "GAP Status Code" | |
con = ibis.duckdb.connect(extensions=["spatial"]) | |
ca = (con | |
.read_parquet(ca_parquet) | |
.cast({"geom": "geometry"}) | |
) | |
# urls for additional data layers | |
url_sr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/species-richness-ca/{z}/{x}/{y}.png" | |
url_rsr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/range-size-rarity/{z}/{x}/{y}.png" | |
url_irr_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_irrecoverable_c_2018_cog.tif" | |
url_man_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_manageable_c_2018_cog.tif" | |
url_svi = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles" | |
url_justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles" | |
url_loss_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/deforest-carbon-ca/{z}/{x}/{y}.png" | |
url_hi = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_human_impact_cog.tif" | |
url_calfire = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_fire_2022.pmtiles" | |
url_rxburn = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_rxburn_2022.pmtiles" | |
# colors for plotting | |
private_access_color = "#DE881E" # orange | |
public_access_color = "#3388ff" # blue | |
tribal_color = "#BF40BF" # purple | |
mixed_color = "#005a00" # green | |
year2023_color = "#26542C" # green | |
year2024_color = "#F3AB3D" # orange | |
federal_color = "#529642" # green | |
state_color = "#A1B03D" # light green | |
local_color = "#365591" # blue | |
special_color = "#0096FF" # blue | |
private_color = "#7A3F1A" # brown | |
joint_color = "#DAB0AE" # light pink | |
county_color = "#DE3163" # magenta | |
city_color = "#ADD8E6" #light blue | |
hoa_color = "#A89BBC" # purple | |
nonprofit_color = "#D77031" #orange | |
justice40_color = "#00008B" #purple | |
svi_color = "#850101" #red | |
white = "#FFFFFF" | |
# gap codes 3 and 4 are off by default. | |
default_gap = { | |
3: False, | |
4: False, | |
} | |
from functools import reduce | |
def get_summary(ca, combined_filter, column, colors=None): #summary stats, based on filtered data | |
# ca = ca.filter(_.reGAP.isin([1,2])) #only gap 1 and 2 | |
df = ca.filter(combined_filter) | |
df = (df | |
.group_by(*column) # unpack the list for grouping | |
.aggregate(percent_protected=100 * _.Acres.sum() / ca_area_acres, | |
mean_richness = (_.richness * _.Acres).sum() / _.Acres.sum(), | |
mean_rsr = (_.rsr * _.Acres).sum() / _.Acres.sum(), | |
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.Acres).sum() / _.Acres.sum(), | |
mean_manageable_carbon = (_.manageable_carbon * _.Acres).sum() / _.Acres.sum(), | |
mean_percent_fire_20yr = (_.percent_fire_20yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_fire_10yr = (_.percent_fire_10yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_fire_5yr = (_.percent_fire_5yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_fire_2yr = (_.percent_fire_2yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_rxburn_20yr = (_.percent_rxburn_20yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_rxburn_10yr = (_.percent_rxburn_10yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_rxburn_5yr = (_.percent_rxburn_5yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_rxburn_2yr = (_.percent_rxburn_2yr *_.Acres).sum()/_.Acres.sum(), | |
mean_percent_disadvantaged = (_.percent_disadvantaged * _.Acres).sum() / _.Acres.sum(), | |
mean_svi = (_.svi * _.Acres).sum() / _.Acres.sum(), | |
mean_svi_socioeconomic_status = (_.svi_socioeconomic_status * _.Acres).sum() / _.Acres.sum(), | |
mean_svi_household_char = (_.svi_household_char * _.Acres).sum() / _.Acres.sum(), | |
mean_svi_racial_ethnic_minority = (_.svi_racial_ethnic_minority * _.Acres).sum() / _.Acres.sum(), | |
mean_svi_housing_transit = (_.svi_housing_transit * _.Acres).sum() / _.Acres.sum(), | |
mean_carbon_lost = (_.deforest_carbon * _.Acres).sum() / _.Acres.sum(), | |
mean_human_impact = (_.human_impact * _.Acres).sum() / _.Acres.sum(), | |
) | |
.mutate(percent_protected=_.percent_protected.round(1)) | |
) | |
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it. | |
df = df.inner_join(colors, column) | |
df = df.cast({col: "string" for col in column}) | |
df = df.to_pandas() | |
return df | |
def summary_table(column, colors, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table + df_percent for percentage (only gap 1 and 2) | |
filters = [] | |
if filter_cols and filter_vals: #if a filter is selected, add to list of filters | |
for filter_col, filter_val in zip(filter_cols, filter_vals): | |
if len(filter_val) > 1: | |
filters.append(getattr(_, filter_col).isin(filter_val)) | |
else: | |
filters.append(getattr(_, filter_col) == filter_val[0]) | |
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter) | |
filter_cols.append(column) | |
filters.append(getattr(_, column).isin(colorby_vals[column])) | |
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression | |
df = get_summary(ca, combined_filter, [column], colors) # df used for charts | |
df_tab = get_summary(ca, combined_filter, filter_cols, colors = None) #df used for printed table | |
df_percent = get_summary(ca.filter(_.reGAP.isin([1,2])), combined_filter, [column], colors) # only gap 1 and 2 count towards percentage | |
return df, df_tab, df_percent | |
def area_plot(df, column): #percent protected pie chart | |
base = alt.Chart(df).encode( | |
alt.Theta("percent_protected:Q").stack(True), | |
) | |
pie = ( base | |
.mark_arc(innerRadius= 40, outerRadius=100) | |
.encode(alt.Color("color:N").scale(None).legend(None), | |
tooltip=['percent_protected', column]) | |
) | |
text = ( base | |
.mark_text(radius=80, size=14, color="white") | |
.encode(text = column + ":N") | |
) | |
plot = pie # pie + text | |
return plot.properties(width="container", height=300) | |
def get_pmtiles_style(paint, alpha, cols, values): #style depends on the filters selected. | |
filters = [] | |
for col, val in zip(cols, values): | |
filter_condition = ["match", ["get", col], val, True, False] | |
filters.append(filter_condition) | |
combined_filter = ["all"] + filters | |
return { | |
"version": 8, | |
"sources": { | |
"ca": { | |
"type": "vector", | |
"url": "pmtiles://" + ca_pmtiles, | |
} | |
}, | |
"layers": [{ | |
"id": "ca30x30", | |
"source": "ca", | |
"source-layer": "layer", | |
"type": "fill", | |
"filter": combined_filter, # Use the combined filter | |
"paint": { | |
"fill-color": paint, | |
"fill-opacity": alpha | |
} | |
}] | |
} | |
def bar_chart(df, x, y): #display summary stats for color_by column | |
chart = alt.Chart(df).mark_bar().encode( | |
x=x, | |
y=y, | |
color=alt.Color('color').scale(None) | |
).properties(width="container", height=300) | |
return chart | |
def getButtons(style_options, style_choice, default_gap=None): #finding the buttons selected to use as filters | |
column = style_options[style_choice]['property'] | |
opts = [style[0] for style in style_options[style_choice]['stops']] | |
default_gap = default_gap or {} | |
buttons = { | |
name: st.checkbox(f"{name}", value=default_gap.get(name, True), key=column + str(name)) | |
for name in opts | |
} | |
filter_choice = [key for key, value in buttons.items() if value] # return only selected | |
d = {} | |
d[column] = filter_choice | |
return d | |
def getColorVals(style_options, style_choice): | |
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter). | |
column = style_options[style_choice]['property'] | |
opts = [style[0] for style in style_options[style_choice]['stops']] | |
d = {} | |
d[column] = opts | |
return d | |
manager = { | |
'property': 'manager_type', | |
'type': 'categorical', | |
'stops': [ | |
['Federal', federal_color], | |
['State', state_color], | |
['Non Profit', nonprofit_color], | |
['Special District', special_color], | |
['Unknown', "grey"], | |
['County', county_color], | |
['City', city_color], | |
['Joint', joint_color], | |
['Tribal', tribal_color], | |
['Private', private_color], | |
['HOA', hoa_color] | |
] | |
} | |
easement = { | |
'property': 'Easement', | |
'type': 'categorical', | |
'stops': [ | |
['Fee', public_access_color], | |
['Easement', private_access_color] | |
] | |
} | |
year = { | |
'property': 'established', | |
'type': 'categorical', | |
'stops': [ | |
[2023, year2023_color], | |
[2024, year2024_color] | |
] | |
} | |
access = { | |
'property': 'access_type', | |
'type': 'categorical', | |
'stops': [ | |
['Open Access', public_access_color], | |
['No Public Access', private_access_color], | |
['Unknown Access', "grey"], | |
['Restricted Access', tribal_color] | |
] | |
} | |
gap = { | |
'property': 'reGAP', | |
'type': 'categorical', | |
'stops': [ | |
[1, "#26633d"], | |
[2, "#879647"], | |
[3, "#BBBBBB"], | |
[4, "#F8F8F8"] | |
] | |
} | |
style_options = { | |
"Year": year, | |
"GAP Status Code": gap, | |
"Manager Type": manager, | |
"Easement": easement, | |
"Public Access": access, | |
} | |
justice40_fill = { | |
'property': 'Disadvan', | |
'type': 'categorical', | |
'stops': [ | |
[0, white], | |
[1, justice40_color] | |
] | |
} | |
def get_justice40_style(url_justice40,justice40_fill,alpha): | |
return { | |
"version": 8, | |
"sources": { | |
"source1": { | |
"type": "vector", | |
"url": "pmtiles://" + url_justice40, | |
"attribution": "Justice40" | |
} | |
}, | |
"layers": [ | |
{ | |
"id": "layer1", | |
"source": "source1", | |
"source-layer": "DisadvantagedCommunitiesCEJST", | |
"filter": ["match", ["get", "StateName"], "California", True, False], | |
"type": "fill", | |
"paint": { | |
"fill-color": justice40_fill, | |
"fill-opacity": alpha | |
} | |
} | |
] | |
} | |
def get_sv_style(url,column,alpha): | |
return { | |
'version': 8, | |
'sources': { | |
'svi_source': { | |
'type': 'vector', | |
'url': "pmtiles://" + url, | |
'attribution': 'Social Vulnerability Index' | |
} | |
}, | |
"layers": [ | |
{ | |
"id": "SVI", | |
"source": "svi_source", | |
"source-layer": "SVI2020_US_county", | |
"filter": ["match", ["get", "STATE"], "California", True, False], | |
"type": "fill", | |
"paint": { | |
"fill-color": [ | |
"interpolate", ["linear"], ["get", column], | |
0, white, | |
1, svi_color | |
], | |
"fill-opacity": alpha | |
} | |
} | |
] | |
} | |
def get_fire_style(layer,alpha): | |
return { | |
'version': 8, | |
'sources': { | |
'source2': { | |
'type': 'vector', | |
'url': "pmtiles://" + url_calfire, | |
'attribution': 'Historical Fire Perimeters' | |
} | |
}, | |
"layers": [ | |
{ | |
"id": "fire", | |
"source": "source2", | |
"source-layer": layer, | |
"type": "fill", | |
"paint": { | |
"fill-color": "#D22B2B", | |
"fill-opacity": alpha | |
} | |
} | |
] | |
} | |
def get_rx_style(layer,alpha): | |
return { | |
'version': 8, | |
'sources': { | |
'source2': { | |
'type': 'vector', | |
'url': "pmtiles://" + url_rxburn, | |
'attribution': 'Prescribed Burns' | |
} | |
}, | |
"layers": [ | |
{ | |
"id": "fire", | |
"source": "source2", | |
"source-layer": layer, | |
"type": "fill", | |
"paint": { | |
"fill-color": "#702963", | |
"fill-opacity": alpha | |
} | |
} | |
] | |
} | |
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:") | |
''' | |
# CA 30X30 Prototype (Safari/iOS Compatible) | |
An interactive cloud-native geospatial tool for exploring and visualizing California’s protected lands through open data and generative AI. | |
- ⬅️ Use the left sidebar to color-code the map by different attributes, toggle on data layers and view summary charts, or filter data. | |
- ℹ️ For non-Safari/iOS users, see [this version](https://huggingface.co/spaces/boettiger-lab/ca-30x30) for a cleaner tooltip display. | |
''' | |
st.divider() | |
# m = leafmap.Map(style="positron") | |
m = leafmap.Map() | |
m.add_basemap("CartoDB.PositronNoLabels") | |
filters = {} | |
with st.sidebar: | |
color_choice = st.radio("Color by:", style_options) | |
colorby_vals = getColorVals(style_options, color_choice) #get options for selected color_by column | |
alpha = st.slider("transparency", 0.0, 1.0, 0.5) | |
st.divider() | |
"Data Layers:" | |
# Biodiversity Section | |
with st.expander("🦜 Biodiversity"): | |
a_bio = st.slider("transparency", 0.0, 1.0, 0.4, key = "biodiversity") | |
show_richness = st.toggle("Species Richness") | |
show_rsr = st.toggle("Range-Size Rarity") | |
if show_richness: | |
m.add_tile_layer(url_sr, name="MOBI Species Richness", attribution = "MOBI", opacity=a_bio) | |
if show_rsr: | |
m.add_tile_layer(url_rsr, name="MOBI Range-Size Rarity",attribution = "MOBI", opacity=a_bio) | |
#Carbon Section | |
with st.expander("⛅ Carbon & Climate"): | |
a_climate = st.slider("transparency", 0.0, 1.0, 0.3, key = "climate") | |
show_irrecoverable_carbon = st.toggle("Irrecoverable Carbon") | |
show_manageable_carbon = st.toggle("Manageable Carbon") | |
if show_irrecoverable_carbon: | |
m.add_cog_layer(url_irr_carbon, palette="reds", name="Irrecoverable Carbon (2010-2018)", attribution = "Conservation International", opacity = a_climate, fit_bounds=False) | |
if show_manageable_carbon: | |
m.add_cog_layer(url_man_carbon, palette="purples", name="Manageable Carbon (2010-2018)", attribution = "Conservation International", opacity = a_climate, fit_bounds=False) | |
# Fire Section | |
with st.expander("🔥 Fire"): | |
a_fire = st.slider("transparency", 0.0, 1.0, 0.3, key = "fire") | |
show_fire_20 = st.toggle("Fires (2003-2022)") | |
show_fire_10 = st.toggle("Fires (2013-2022)") | |
show_fire_5 = st.toggle("Fires (2018-2022)") | |
show_fire_2 = st.toggle("Fires (2022)") | |
show_rx_20 = st.toggle("Prescribed Burns (2003-2022)") | |
show_rx_10 = st.toggle("Prescribed Burns (2013-2022)") | |
show_rx_5 = st.toggle("Prescribed Burns (2018-2022)") | |
show_rx_2 = st.toggle("Prescribed Burns (2022)") | |
if show_fire_20: | |
m.add_pmtiles(url_calfire, style=get_fire_style("layer1",a_fire), name="CAL FIRE Fire Polygons (2003-2022)", tooltip=False, zoom_to_layer = True) | |
if show_fire_10: | |
m.add_pmtiles(url_calfire, style=get_fire_style("layer2",a_fire), name="CAL FIRE Fire Polygons (2013-2022)", tooltip=False, zoom_to_layer = True) | |
if show_fire_5: | |
m.add_pmtiles(url_calfire, style=get_fire_style("layer3",a_fire), name="CAL FIRE Fire Polygons (2018-2022)", tooltip=False, zoom_to_layer = True) | |
if show_fire_2: | |
m.add_pmtiles(url_calfire, style=get_fire_style("layer4",a_fire), name="CAL FIRE Fire Polygons (2022)", tooltip=False, zoom_to_layer = True) | |
if show_rx_20: | |
m.add_pmtiles(url_rxburn, style=get_rx_style("layer1",a_fire), name="CAL FIRE Prescribed Burns (2003-2022)", tooltip=False, zoom_to_layer = True) | |
if show_rx_10: | |
m.add_pmtiles(url_rxburn, style=get_rx_style("layer2",a_fire), name="CAL FIRE Prescribed Burns (2013-2022)", tooltip=False, zoom_to_layer = True) | |
if show_rx_5: | |
m.add_pmtiles(url_rxburn, style=get_rx_style("layer3",a_fire), name="CAL FIRE Prescribed Burns (2018-2022)", tooltip=False, zoom_to_layer = True) | |
if show_rx_2: | |
m.add_pmtiles(url_rxburn, style=get_rx_style("layer4",a_fire), name="CAL FIRE Prescribed Burns (2022)", tooltip=False, zoom_to_layer = True) | |
# Justice40 Section | |
with st.expander("🌱 Climate & Economic Justice"): | |
a_justice = st.slider("transparency", 0.0, 1.0, 0.3, key = "social justice") | |
show_justice40 = st.toggle("Justice40") | |
if show_justice40: | |
justice_style = get_justice40_style(url_justice40,justice40_fill,a_justice) | |
m.add_pmtiles(url_justice40, style=justice_style, name="Justice40", tooltip=False, zoom_to_layer = False) | |
# SVI Section | |
with st.expander("🏡 Social Vulnerability"): | |
a_svi = st.slider("transparency", 0.0, 1.0, 0.3, key = "SVI") | |
show_sv = st.toggle("Social Vulnerability Index (SVI)") | |
show_sv_socio = st.toggle("Socioeconomic Status") | |
show_sv_household = st.toggle("Household Characteristics") | |
show_sv_minority = st.toggle("Racial & Ethnic Minority Status") | |
show_sv_housing = st.toggle("Housing Type & Transportation") | |
if show_sv: | |
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEMES",a_svi), tooltip=False, name = "SVI (2020)", zoom_to_layer = False) | |
if show_sv_socio: | |
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME1",a_svi), tooltip=False, name = "Socioeconomic Status - SVI (2020)", zoom_to_layer = False) | |
if show_sv_household: | |
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME2",a_svi), tooltip=False, name = "Household Characteristics - SVI (2020)", zoom_to_layer = False) | |
if show_sv_minority: | |
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME3",a_svi), tooltip=False, name = "Racial & Ethnic Minority Status - SVI (2020)", zoom_to_layer = False) | |
if show_sv_housing: | |
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME4",a_svi), tooltip=False, name = "Housing Type & Transportation - SVI (2020)", zoom_to_layer = False) | |
# HI Section | |
with st.expander("🚜 Human Impacts"): | |
a_hi = st.slider("transparency", 0.0, 1.0, 0.5, key = "hi") | |
show_carbon_lost = st.toggle("Deforested Carbon (2002-2022)") | |
show_human_impact = st.toggle("Human Footprint (2017-2021)") | |
if show_carbon_lost: | |
m.add_tile_layer(url_loss_carbon, name="Deforested Carbon (2002-2022)",attribution = "Gassert et al. (2023)", opacity = a_hi) | |
if show_human_impact: | |
m.add_cog_layer(url_hi, name="Human Footprint (2017-2021)", attribution = "Gassert et al. (2023)", opacity = a_hi, fit_bounds=False) | |
st.divider() | |
"Filters:" | |
for label in style_options: # get selected filters (based on the buttons selected) | |
with st.expander(label): | |
if label == "GAP Status Code": # gap code 1 and 2 are on by default | |
opts = getButtons(style_options, label, default_gap) | |
else: # other buttons are not on by default. | |
opts = getButtons(style_options, label) | |
filters.update(opts) | |
selected = {k: v for k, v in filters.items() if v} | |
if selected: | |
filter_cols = list(selected.keys()) | |
filter_vals = list(selected.values()) | |
else: | |
filter_cols = [] | |
filter_vals = [] | |
# Display CA 30x30 Data | |
style = get_pmtiles_style(style_options[color_choice], alpha, filter_cols, filter_vals) | |
legend_d = {cat: color for cat, color in style_options[color_choice]['stops']} | |
m.add_legend(legend_dict = legend_d) | |
m.add_pmtiles(ca_pmtiles, style=style, name="CA 30x30", tooltip=True, overlay = True) | |
select_column = { | |
"Year": "established", | |
"GAP Status Code": "reGAP", | |
"Manager Type": "manager_type", | |
"Easement": "Easement", | |
"Public Access": "access_type", | |
} | |
column = select_column[color_choice] | |
select_colors = { | |
"Year": year["stops"], | |
"GAP Status Code": gap["stops"], | |
"Manager Type": manager["stops"], | |
"Easement": easement["stops"], | |
"Public Access": access["stops"], | |
} | |
colors = ( | |
ibis | |
.memtable(select_colors[color_choice], columns=[column, "color"]) | |
.to_pandas() | |
) | |
# get summary tables used for charts + printed table + percentage | |
# df - charts; df_tab - printed table (omits colors) + df_percent - only gap codes 1 & 2 count towards percentage | |
df,df_tab,df_percent = summary_table(column, colors, filter_cols, filter_vals, colorby_vals) | |
# compute area covered (only gap 1 and 2) | |
# df_onlygap = df[df.reGAP.isin([1,2])] | |
total_percent = df_percent.percent_protected.sum().round(1) | |
# charts displayed based on color_by variable | |
richness_chart = bar_chart(df, column, 'mean_richness') | |
rsr_chart = bar_chart(df, column, 'mean_rsr') | |
irr_carbon_chart = bar_chart(df, column, 'mean_irrecoverable_carbon') | |
man_carbon_chart = bar_chart(df, column, 'mean_manageable_carbon') | |
fire_20_chart = bar_chart(df, column, 'mean_percent_fire_20yr') | |
fire_10_chart = bar_chart(df, column, 'mean_percent_fire_10yr') | |
fire_5_chart = bar_chart(df, column, 'mean_percent_fire_5yr') | |
fire_2_chart = bar_chart(df, column, 'mean_percent_fire_2yr') | |
rx_20_chart = bar_chart(df, column, 'mean_percent_rxburn_20yr') | |
rx_10_chart = bar_chart(df, column, 'mean_percent_rxburn_10yr') | |
rx_5_chart = bar_chart(df, column, 'mean_percent_rxburn_5yr') | |
rx_2_chart = bar_chart(df, column, 'mean_percent_rxburn_2yr') | |
justice40_chart = bar_chart(df, column, 'mean_percent_disadvantaged') | |
svi_chart = bar_chart(df, column, 'mean_svi') | |
svi_socio_chart = bar_chart(df, column, 'mean_svi_socioeconomic_status') | |
svi_house_chart = bar_chart(df, column, 'mean_svi_household_char') | |
svi_minority_chart = bar_chart(df, column, 'mean_svi_racial_ethnic_minority') | |
svi_transit_chart = bar_chart(df, column, 'mean_svi_housing_transit') | |
carbon_loss_chart = bar_chart(df, column, 'mean_carbon_lost') | |
hi_chart = bar_chart(df, column, 'mean_human_impact') | |
main = st.container() | |
with main: | |
map_col, stats_col = st.columns([2,1]) | |
with map_col: | |
m.to_streamlit(scrolling = True) | |
st.dataframe(df_tab, use_container_width = True) | |
with stats_col: | |
with st.container(): | |
f"{total_percent}% CA Covered" | |
st.altair_chart(area_plot(df_percent, column), use_container_width=True) | |
if show_richness: | |
"Species Richness" | |
st.altair_chart(richness_chart, use_container_width=True) | |
if show_rsr: | |
"Range-Size Rarity" | |
st.altair_chart(rsr_chart, use_container_width=True) | |
if show_irrecoverable_carbon: | |
"Irrecoverable Carbon" | |
st.altair_chart(irr_carbon_chart, use_container_width=True) | |
if show_manageable_carbon: | |
"Manageable Carbon" | |
st.altair_chart(man_carbon_chart, use_container_width=True) | |
if show_fire_20: | |
"Fires (2003-2022)" | |
st.altair_chart(fire_20_chart, use_container_width=True) | |
if show_fire_10: | |
"Fires (2013-2022)" | |
st.altair_chart(fire_10_chart, use_container_width=True) | |
if show_fire_5: | |
"Fires (2018-2022)" | |
st.altair_chart(fire_5_chart, use_container_width=True) | |
if show_fire_2: | |
"Fires (2022)" | |
st.altair_chart(fire_2_chart, use_container_width=True) | |
if show_rx_20: | |
"Prescribed Burns (2003-2022)" | |
st.altair_chart(rx_20_chart, use_container_width=True) | |
if show_rx_10: | |
"Prescribed Burns (2013-2022)" | |
st.altair_chart(rx_10_chart, use_container_width=True) | |
if show_rx_5: | |
"Prescribed Burns (2018-2022)" | |
st.altair_chart(rx_5_chart, use_container_width=True) | |
if show_rx_2: | |
"Prescribed Burns (2022)" | |
st.altair_chart(rx_2_chart, use_container_width=True) | |
if show_justice40: | |
"Justice40" | |
st.altair_chart(justice40_chart, use_container_width=True) | |
if show_sv: | |
"Social Vulnerability Index" | |
st.altair_chart(svi_chart, use_container_width=True) | |
if show_sv_socio: | |
"SVI - Socioeconomic Status" | |
st.altair_chart(svi_socio_chart, use_container_width=True) | |
if show_sv_household: | |
"SVI - Household Characteristics" | |
st.altair_chart(svi_house_chart, use_container_width=True) | |
if show_sv_minority: | |
"SVI - Racial and Ethnic Minority" | |
st.altair_chart(svi_minority_chart, use_container_width=True) | |
if show_sv_housing: | |
"SVI - Housing Type and Transit" | |
st.altair_chart(svi_transit_chart, use_container_width=True) | |
if show_carbon_lost: | |
"Deforested Carbon (2002-2022)" | |
st.altair_chart(carbon_loss_chart, use_container_width=True) | |
if show_human_impact: | |
"Human Footprint (2017-2021)" | |
st.altair_chart(hi_chart, use_container_width=True) | |
st.divider() | |
footer = st.container() | |
st.caption("***The label 'established' is inferred from the California Protected Areas Database, which may introduce artifacts. For details on our methodology, please refer to our code: https://github.com/boettiger-lab/ca-30x30.") | |
st.caption("***Under California’s 30x30 framework, only GAP codes 1 and 2 are counted toward the conservation goal. While our dashboard displays GAP codes 1-4 for reference, the '25.2% of CA Covered' statistic reflects only GAP codes 1 and 2, as designated by CA 30x30 criteria.") | |
''' | |
## Credits | |
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley | |
License: BSD-2-clause | |
Data: https://huggingface.co/datasets/boettiger-lab/ca-30x30 | |
### Data sources | |
- California Protected Areas Database by CA Nature. Data: https://www.californianature.ca.gov/datasets/CAnature::30x30-conserved-areas-terrestrial-2024/about. License: Public Domain | |
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND | |
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC | |
- Fire polygons by CAL FIRE (2022), reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain | |
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40, data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain | |
- CDC 2020 Social Vulnerability Index by US Census Track. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain | |
- Carbon-loss by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY | |
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain | |
''' | |