Spaces:
Sleeping
Sleeping
File size: 29,248 Bytes
ba4e718 aa57a7d ba4e718 59b4a4b 5f9421b e6a4360 374a500 4078af3 ba4e718 4078af3 b302357 ba4e718 59b4a4b ba4e718 9d71920 5f9421b d2129bd 5f9421b 9d71920 40f21cc ba4e718 40f21cc 5f9421b 40f21cc 5f9421b 40f21cc 5f9421b 40f21cc 2670113 5f9421b 2670113 5f9421b 9d71920 4078af3 9d71920 5f9421b 6560afd 5f9421b d2129bd 5f9421b 6560afd 5f9421b 6560afd 9d9a528 5f9421b 9d9a528 9d71920 4078af3 5f9421b b338fe9 5f9421b 9d9a528 5f9421b ba4e718 5f9421b ba4e718 59b4a4b ba4e718 5f9421b 40f21cc e6a4360 40f21cc aa57a7d 5f9421b e6a4360 5f9421b 2c93f68 9d71920 4078af3 2670113 4078af3 9d71920 40f21cc 4078af3 5f9421b b338fe9 5f9421b ba4e718 5f9421b aa57a7d 5f9421b ba4e718 5f9421b aa57a7d 5f9421b ba4e718 5f9421b ba4e718 b302357 ba4e718 40f21cc ba4e718 5f9421b 9d71920 ba4e718 5f9421b e6a4360 5f9421b aa57a7d e6a4360 5f9421b e6a4360 5f9421b e6a4360 5f9421b aa57a7d 5f9421b e6a4360 aa57a7d 5f9421b aa57a7d 5f9421b aa57a7d 5f9421b aa57a7d 5f9421b b338fe9 d2129bd b338fe9 ba4e718 5f9421b ba4e718 374a500 ba4e718 d428866 fc33b33 712f0ff d428866 2670113 d428866 2670113 aa57a7d 40f21cc ba4e718 b338fe9 5f9421b ba4e718 b338fe9 e6a4360 5f9421b e6a4360 5f9421b e6a4360 aa57a7d b338fe9 e6a4360 aa57a7d b338fe9 5f9421b e6a4360 fa53330 5f9421b 2b288ca 5f9421b 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca fa53330 d2129bd 5f9421b fa53330 5f9421b b338fe9 aa57a7d b338fe9 aa57a7d b338fe9 5f9421b fa53330 5f9421b b338fe9 5f9421b 2b288ca 5f9421b 2b288ca 5f9421b 2b288ca 5f9421b 2b288ca 5f9421b b338fe9 2b288ca b338fe9 5f9421b e6a4360 5f9421b 2b288ca 5f9421b 2b288ca 5f9421b e6a4360 2b288ca ba4e718 aa57a7d ba4e718 5f9421b ba4e718 40f21cc ba4e718 5f9421b ba4e718 5f9421b d2129bd 5f9421b ba4e718 b338fe9 ba4e718 5f9421b ba4e718 aa57a7d b338fe9 ba4e718 5f9421b b338fe9 e6a4360 5f9421b e6a4360 b338fe9 5f9421b d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd 2b288ca d2129bd a5690c3 5f9421b a5690c3 b338fe9 5f9421b b338fe9 5f9421b b338fe9 5f9421b b338fe9 5f9421b b338fe9 5f9421b b338fe9 2b288ca 5f9421b e6a4360 2b288ca 5f9421b ba4e718 b302357 5f9421b e6a4360 120ae50 e6a4360 fa53330 2b288ca 6929c5e b338fe9 fa53330 e6a4360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import streamlit as st
import streamlit.components.v1 as components
import base64
# import leafmap.maplibregl as leafmap
import leafmap.foliumap as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
# urls for main layer
ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.pmtiles"
# ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet"
ca_parquet = "cpad-stats.parquet" #local copy is faster
ca_area_acres = 1.014e8 #acres
style_choice = "GAP Status Code"
con = ibis.duckdb.connect(extensions=["spatial"])
ca = (con
.read_parquet(ca_parquet)
.cast({"geom": "geometry"})
)
# urls for additional data layers
url_sr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/species-richness-ca/{z}/{x}/{y}.png"
url_rsr = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/range-size-rarity/{z}/{x}/{y}.png"
url_irr_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_irrecoverable_c_2018_cog.tif"
url_man_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_manageable_c_2018_cog.tif"
url_svi = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles"
url_justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
url_loss_carbon = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/deforest-carbon-ca/{z}/{x}/{y}.png"
url_hi = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_human_impact_cog.tif"
url_calfire = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_fire_2022.pmtiles"
url_rxburn = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cal_rxburn_2022.pmtiles"
# colors for plotting
private_access_color = "#DE881E" # orange
public_access_color = "#3388ff" # blue
tribal_color = "#BF40BF" # purple
mixed_color = "#005a00" # green
year2023_color = "#26542C" # green
year2024_color = "#F3AB3D" # orange
federal_color = "#529642" # green
state_color = "#A1B03D" # light green
local_color = "#365591" # blue
special_color = "#0096FF" # blue
private_color = "#7A3F1A" # brown
joint_color = "#DAB0AE" # light pink
county_color = "#DE3163" # magenta
city_color = "#ADD8E6" #light blue
hoa_color = "#A89BBC" # purple
nonprofit_color = "#D77031" #orange
justice40_color = "#00008B" #purple
svi_color = "#850101" #red
white = "#FFFFFF"
# gap codes 3 and 4 are off by default.
default_gap = {
3: False,
4: False,
}
from functools import reduce
def get_summary(ca, combined_filter, column, colors=None): #summary stats, based on filtered data
# ca = ca.filter(_.reGAP.isin([1,2])) #only gap 1 and 2
df = ca.filter(combined_filter)
df = (df
.group_by(*column) # unpack the list for grouping
.aggregate(percent_protected=100 * _.Acres.sum() / ca_area_acres,
mean_richness = (_.richness * _.Acres).sum() / _.Acres.sum(),
mean_rsr = (_.rsr * _.Acres).sum() / _.Acres.sum(),
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.Acres).sum() / _.Acres.sum(),
mean_manageable_carbon = (_.manageable_carbon * _.Acres).sum() / _.Acres.sum(),
mean_percent_fire_20yr = (_.percent_fire_20yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_fire_10yr = (_.percent_fire_10yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_fire_5yr = (_.percent_fire_5yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_fire_2yr = (_.percent_fire_2yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_rxburn_20yr = (_.percent_rxburn_20yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_rxburn_10yr = (_.percent_rxburn_10yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_rxburn_5yr = (_.percent_rxburn_5yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_rxburn_2yr = (_.percent_rxburn_2yr *_.Acres).sum()/_.Acres.sum(),
mean_percent_disadvantaged = (_.percent_disadvantaged * _.Acres).sum() / _.Acres.sum(),
mean_svi = (_.svi * _.Acres).sum() / _.Acres.sum(),
mean_svi_socioeconomic_status = (_.svi_socioeconomic_status * _.Acres).sum() / _.Acres.sum(),
mean_svi_household_char = (_.svi_household_char * _.Acres).sum() / _.Acres.sum(),
mean_svi_racial_ethnic_minority = (_.svi_racial_ethnic_minority * _.Acres).sum() / _.Acres.sum(),
mean_svi_housing_transit = (_.svi_housing_transit * _.Acres).sum() / _.Acres.sum(),
mean_carbon_lost = (_.deforest_carbon * _.Acres).sum() / _.Acres.sum(),
mean_human_impact = (_.human_impact * _.Acres).sum() / _.Acres.sum(),
)
.mutate(percent_protected=_.percent_protected.round(1))
)
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
df = df.inner_join(colors, column)
df = df.cast({col: "string" for col in column})
df = df.to_pandas()
return df
def summary_table(column, colors, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table + df_percent for percentage (only gap 1 and 2)
filters = []
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
df_tab = get_summary(ca, combined_filter, filter_cols, colors = None) #df used for printed table
df_percent = get_summary(ca.filter(_.reGAP.isin([1,2])), combined_filter, [column], colors) # only gap 1 and 2 count towards percentage
return df, df_tab, df_percent
def area_plot(df, column): #percent protected pie chart
base = alt.Chart(df).encode(
alt.Theta("percent_protected:Q").stack(True),
)
pie = ( base
.mark_arc(innerRadius= 40, outerRadius=100)
.encode(alt.Color("color:N").scale(None).legend(None),
tooltip=['percent_protected', column])
)
text = ( base
.mark_text(radius=80, size=14, color="white")
.encode(text = column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=300)
def get_pmtiles_style(paint, alpha, cols, values): #style depends on the filters selected.
filters = []
for col, val in zip(cols, values):
filter_condition = ["match", ["get", col], val, True, False]
filters.append(filter_condition)
combined_filter = ["all"] + filters
return {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [{
"id": "ca30x30",
"source": "ca",
"source-layer": "layer",
"type": "fill",
"filter": combined_filter, # Use the combined filter
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}]
}
def bar_chart(df, x, y): #display summary stats for color_by column
chart = alt.Chart(df).mark_bar().encode(
x=x,
y=y,
color=alt.Color('color').scale(None)
).properties(width="container", height=300)
return chart
def getButtons(style_options, style_choice, default_gap=None): #finding the buttons selected to use as filters
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_gap = default_gap or {}
buttons = {
name: st.checkbox(f"{name}", value=default_gap.get(name, True), key=column + str(name))
for name in opts
}
filter_choice = [key for key, value in buttons.items() if value] # return only selected
d = {}
d[column] = filter_choice
return d
def getColorVals(style_options, style_choice):
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
d = {}
d[column] = opts
return d
manager = {
'property': 'manager_type',
'type': 'categorical',
'stops': [
['Federal', federal_color],
['State', state_color],
['Non Profit', nonprofit_color],
['Special District', special_color],
['Unknown', "grey"],
['County', county_color],
['City', city_color],
['Joint', joint_color],
['Tribal', tribal_color],
['Private', private_color],
['HOA', hoa_color]
]
}
easement = {
'property': 'Easement',
'type': 'categorical',
'stops': [
['Fee', public_access_color],
['Easement', private_access_color]
]
}
year = {
'property': 'established',
'type': 'categorical',
'stops': [
[2023, year2023_color],
[2024, year2024_color]
]
}
access = {
'property': 'access_type',
'type': 'categorical',
'stops': [
['Open Access', public_access_color],
['No Public Access', private_access_color],
['Unknown Access', "grey"],
['Restricted Access', tribal_color]
]
}
gap = {
'property': 'reGAP',
'type': 'categorical',
'stops': [
[1, "#26633d"],
[2, "#879647"],
[3, "#BBBBBB"],
[4, "#F8F8F8"]
]
}
style_options = {
"Year": year,
"GAP Status Code": gap,
"Manager Type": manager,
"Easement": easement,
"Public Access": access,
}
justice40_fill = {
'property': 'Disadvan',
'type': 'categorical',
'stops': [
[0, white],
[1, justice40_color]
]
}
def get_justice40_style(url_justice40,justice40_fill,alpha):
return {
"version": 8,
"sources": {
"source1": {
"type": "vector",
"url": "pmtiles://" + url_justice40,
"attribution": "Justice40"
}
},
"layers": [
{
"id": "layer1",
"source": "source1",
"source-layer": "DisadvantagedCommunitiesCEJST",
"filter": ["match", ["get", "StateName"], "California", True, False],
"type": "fill",
"paint": {
"fill-color": justice40_fill,
"fill-opacity": alpha
}
}
]
}
def get_sv_style(url,column,alpha):
return {
'version': 8,
'sources': {
'svi_source': {
'type': 'vector',
'url': "pmtiles://" + url,
'attribution': 'Social Vulnerability Index'
}
},
"layers": [
{
"id": "SVI",
"source": "svi_source",
"source-layer": "SVI2020_US_county",
"filter": ["match", ["get", "STATE"], "California", True, False],
"type": "fill",
"paint": {
"fill-color": [
"interpolate", ["linear"], ["get", column],
0, white,
1, svi_color
],
"fill-opacity": alpha
}
}
]
}
def get_fire_style(layer,alpha):
return {
'version': 8,
'sources': {
'source2': {
'type': 'vector',
'url': "pmtiles://" + url_calfire,
'attribution': 'Historical Fire Perimeters'
}
},
"layers": [
{
"id": "fire",
"source": "source2",
"source-layer": layer,
"type": "fill",
"paint": {
"fill-color": "#D22B2B",
"fill-opacity": alpha
}
}
]
}
def get_rx_style(layer,alpha):
return {
'version': 8,
'sources': {
'source2': {
'type': 'vector',
'url': "pmtiles://" + url_rxburn,
'attribution': 'Prescribed Burns'
}
},
"layers": [
{
"id": "fire",
"source": "source2",
"source-layer": layer,
"type": "fill",
"paint": {
"fill-color": "#702963",
"fill-opacity": alpha
}
}
]
}
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:")
'''
# CA 30X30 Prototype (Safari/iOS Compatible)
An interactive cloud-native geospatial tool for exploring and visualizing California’s protected lands through open data and generative AI.
- ⬅️ Use the left sidebar to color-code the map by different attributes, toggle on data layers and view summary charts, or filter data.
- ℹ️ For non-Safari/iOS users, see [this version](https://huggingface.co/spaces/boettiger-lab/ca-30x30) for a cleaner tooltip display.
'''
st.divider()
# m = leafmap.Map(style="positron")
m = leafmap.Map()
m.add_basemap("CartoDB.PositronNoLabels")
filters = {}
with st.sidebar:
color_choice = st.radio("Color by:", style_options)
colorby_vals = getColorVals(style_options, color_choice) #get options for selected color_by column
alpha = st.slider("transparency", 0.0, 1.0, 0.5)
st.divider()
"Data Layers:"
# Biodiversity Section
with st.expander("🦜 Biodiversity"):
a_bio = st.slider("transparency", 0.0, 1.0, 0.4, key = "biodiversity")
show_richness = st.toggle("Species Richness")
show_rsr = st.toggle("Range-Size Rarity")
if show_richness:
m.add_tile_layer(url_sr, name="MOBI Species Richness", attribution = "MOBI", opacity=a_bio)
if show_rsr:
m.add_tile_layer(url_rsr, name="MOBI Range-Size Rarity",attribution = "MOBI", opacity=a_bio)
#Carbon Section
with st.expander("⛅ Carbon & Climate"):
a_climate = st.slider("transparency", 0.0, 1.0, 0.3, key = "climate")
show_irrecoverable_carbon = st.toggle("Irrecoverable Carbon")
show_manageable_carbon = st.toggle("Manageable Carbon")
if show_irrecoverable_carbon:
m.add_cog_layer(url_irr_carbon, palette="reds", name="Irrecoverable Carbon (2010-2018)", attribution = "Conservation International", opacity = a_climate, fit_bounds=False)
if show_manageable_carbon:
m.add_cog_layer(url_man_carbon, palette="purples", name="Manageable Carbon (2010-2018)", attribution = "Conservation International", opacity = a_climate, fit_bounds=False)
# Fire Section
with st.expander("🔥 Fire"):
a_fire = st.slider("transparency", 0.0, 1.0, 0.3, key = "fire")
show_fire_20 = st.toggle("Fires (2003-2022)")
show_fire_10 = st.toggle("Fires (2013-2022)")
show_fire_5 = st.toggle("Fires (2018-2022)")
show_fire_2 = st.toggle("Fires (2022)")
show_rx_20 = st.toggle("Prescribed Burns (2003-2022)")
show_rx_10 = st.toggle("Prescribed Burns (2013-2022)")
show_rx_5 = st.toggle("Prescribed Burns (2018-2022)")
show_rx_2 = st.toggle("Prescribed Burns (2022)")
if show_fire_20:
m.add_pmtiles(url_calfire, style=get_fire_style("layer1",a_fire), name="CAL FIRE Fire Polygons (2003-2022)", tooltip=False, zoom_to_layer = True)
if show_fire_10:
m.add_pmtiles(url_calfire, style=get_fire_style("layer2",a_fire), name="CAL FIRE Fire Polygons (2013-2022)", tooltip=False, zoom_to_layer = True)
if show_fire_5:
m.add_pmtiles(url_calfire, style=get_fire_style("layer3",a_fire), name="CAL FIRE Fire Polygons (2018-2022)", tooltip=False, zoom_to_layer = True)
if show_fire_2:
m.add_pmtiles(url_calfire, style=get_fire_style("layer4",a_fire), name="CAL FIRE Fire Polygons (2022)", tooltip=False, zoom_to_layer = True)
if show_rx_20:
m.add_pmtiles(url_rxburn, style=get_rx_style("layer1",a_fire), name="CAL FIRE Prescribed Burns (2003-2022)", tooltip=False, zoom_to_layer = True)
if show_rx_10:
m.add_pmtiles(url_rxburn, style=get_rx_style("layer2",a_fire), name="CAL FIRE Prescribed Burns (2013-2022)", tooltip=False, zoom_to_layer = True)
if show_rx_5:
m.add_pmtiles(url_rxburn, style=get_rx_style("layer3",a_fire), name="CAL FIRE Prescribed Burns (2018-2022)", tooltip=False, zoom_to_layer = True)
if show_rx_2:
m.add_pmtiles(url_rxburn, style=get_rx_style("layer4",a_fire), name="CAL FIRE Prescribed Burns (2022)", tooltip=False, zoom_to_layer = True)
# Justice40 Section
with st.expander("🌱 Climate & Economic Justice"):
a_justice = st.slider("transparency", 0.0, 1.0, 0.3, key = "social justice")
show_justice40 = st.toggle("Justice40")
if show_justice40:
justice_style = get_justice40_style(url_justice40,justice40_fill,a_justice)
m.add_pmtiles(url_justice40, style=justice_style, name="Justice40", tooltip=False, zoom_to_layer = False)
# SVI Section
with st.expander("🏡 Social Vulnerability"):
a_svi = st.slider("transparency", 0.0, 1.0, 0.3, key = "SVI")
show_sv = st.toggle("Social Vulnerability Index (SVI)")
show_sv_socio = st.toggle("Socioeconomic Status")
show_sv_household = st.toggle("Household Characteristics")
show_sv_minority = st.toggle("Racial & Ethnic Minority Status")
show_sv_housing = st.toggle("Housing Type & Transportation")
if show_sv:
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEMES",a_svi), tooltip=False, name = "SVI (2020)", zoom_to_layer = False)
if show_sv_socio:
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME1",a_svi), tooltip=False, name = "Socioeconomic Status - SVI (2020)", zoom_to_layer = False)
if show_sv_household:
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME2",a_svi), tooltip=False, name = "Household Characteristics - SVI (2020)", zoom_to_layer = False)
if show_sv_minority:
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME3",a_svi), tooltip=False, name = "Racial & Ethnic Minority Status - SVI (2020)", zoom_to_layer = False)
if show_sv_housing:
m.add_pmtiles(url_svi, style = get_sv_style(url_svi, "RPL_THEME4",a_svi), tooltip=False, name = "Housing Type & Transportation - SVI (2020)", zoom_to_layer = False)
# HI Section
with st.expander("🚜 Human Impacts"):
a_hi = st.slider("transparency", 0.0, 1.0, 0.5, key = "hi")
show_carbon_lost = st.toggle("Deforested Carbon (2002-2022)")
show_human_impact = st.toggle("Human Footprint (2017-2021)")
if show_carbon_lost:
m.add_tile_layer(url_loss_carbon, name="Deforested Carbon (2002-2022)",attribution = "Gassert et al. (2023)", opacity = a_hi)
if show_human_impact:
m.add_cog_layer(url_hi, name="Human Footprint (2017-2021)", attribution = "Gassert et al. (2023)", opacity = a_hi, fit_bounds=False)
st.divider()
"Filters:"
for label in style_options: # get selected filters (based on the buttons selected)
with st.expander(label):
if label == "GAP Status Code": # gap code 1 and 2 are on by default
opts = getButtons(style_options, label, default_gap)
else: # other buttons are not on by default.
opts = getButtons(style_options, label)
filters.update(opts)
selected = {k: v for k, v in filters.items() if v}
if selected:
filter_cols = list(selected.keys())
filter_vals = list(selected.values())
else:
filter_cols = []
filter_vals = []
# Display CA 30x30 Data
style = get_pmtiles_style(style_options[color_choice], alpha, filter_cols, filter_vals)
legend_d = {cat: color for cat, color in style_options[color_choice]['stops']}
m.add_legend(legend_dict = legend_d)
m.add_pmtiles(ca_pmtiles, style=style, name="CA 30x30", tooltip=True, overlay = True)
select_column = {
"Year": "established",
"GAP Status Code": "reGAP",
"Manager Type": "manager_type",
"Easement": "Easement",
"Public Access": "access_type",
}
column = select_column[color_choice]
select_colors = {
"Year": year["stops"],
"GAP Status Code": gap["stops"],
"Manager Type": manager["stops"],
"Easement": easement["stops"],
"Public Access": access["stops"],
}
colors = (
ibis
.memtable(select_colors[color_choice], columns=[column, "color"])
.to_pandas()
)
# get summary tables used for charts + printed table + percentage
# df - charts; df_tab - printed table (omits colors) + df_percent - only gap codes 1 & 2 count towards percentage
df,df_tab,df_percent = summary_table(column, colors, filter_cols, filter_vals, colorby_vals)
# compute area covered (only gap 1 and 2)
# df_onlygap = df[df.reGAP.isin([1,2])]
total_percent = df_percent.percent_protected.sum().round(1)
# charts displayed based on color_by variable
richness_chart = bar_chart(df, column, 'mean_richness')
rsr_chart = bar_chart(df, column, 'mean_rsr')
irr_carbon_chart = bar_chart(df, column, 'mean_irrecoverable_carbon')
man_carbon_chart = bar_chart(df, column, 'mean_manageable_carbon')
fire_20_chart = bar_chart(df, column, 'mean_percent_fire_20yr')
fire_10_chart = bar_chart(df, column, 'mean_percent_fire_10yr')
fire_5_chart = bar_chart(df, column, 'mean_percent_fire_5yr')
fire_2_chart = bar_chart(df, column, 'mean_percent_fire_2yr')
rx_20_chart = bar_chart(df, column, 'mean_percent_rxburn_20yr')
rx_10_chart = bar_chart(df, column, 'mean_percent_rxburn_10yr')
rx_5_chart = bar_chart(df, column, 'mean_percent_rxburn_5yr')
rx_2_chart = bar_chart(df, column, 'mean_percent_rxburn_2yr')
justice40_chart = bar_chart(df, column, 'mean_percent_disadvantaged')
svi_chart = bar_chart(df, column, 'mean_svi')
svi_socio_chart = bar_chart(df, column, 'mean_svi_socioeconomic_status')
svi_house_chart = bar_chart(df, column, 'mean_svi_household_char')
svi_minority_chart = bar_chart(df, column, 'mean_svi_racial_ethnic_minority')
svi_transit_chart = bar_chart(df, column, 'mean_svi_housing_transit')
carbon_loss_chart = bar_chart(df, column, 'mean_carbon_lost')
hi_chart = bar_chart(df, column, 'mean_human_impact')
main = st.container()
with main:
map_col, stats_col = st.columns([2,1])
with map_col:
m.to_streamlit(scrolling = True)
st.dataframe(df_tab, use_container_width = True)
with stats_col:
with st.container():
f"{total_percent}% CA Covered"
st.altair_chart(area_plot(df_percent, column), use_container_width=True)
if show_richness:
"Species Richness"
st.altair_chart(richness_chart, use_container_width=True)
if show_rsr:
"Range-Size Rarity"
st.altair_chart(rsr_chart, use_container_width=True)
if show_irrecoverable_carbon:
"Irrecoverable Carbon"
st.altair_chart(irr_carbon_chart, use_container_width=True)
if show_manageable_carbon:
"Manageable Carbon"
st.altair_chart(man_carbon_chart, use_container_width=True)
if show_fire_20:
"Fires (2003-2022)"
st.altair_chart(fire_20_chart, use_container_width=True)
if show_fire_10:
"Fires (2013-2022)"
st.altair_chart(fire_10_chart, use_container_width=True)
if show_fire_5:
"Fires (2018-2022)"
st.altair_chart(fire_5_chart, use_container_width=True)
if show_fire_2:
"Fires (2022)"
st.altair_chart(fire_2_chart, use_container_width=True)
if show_rx_20:
"Prescribed Burns (2003-2022)"
st.altair_chart(rx_20_chart, use_container_width=True)
if show_rx_10:
"Prescribed Burns (2013-2022)"
st.altair_chart(rx_10_chart, use_container_width=True)
if show_rx_5:
"Prescribed Burns (2018-2022)"
st.altair_chart(rx_5_chart, use_container_width=True)
if show_rx_2:
"Prescribed Burns (2022)"
st.altair_chart(rx_2_chart, use_container_width=True)
if show_justice40:
"Justice40"
st.altair_chart(justice40_chart, use_container_width=True)
if show_sv:
"Social Vulnerability Index"
st.altair_chart(svi_chart, use_container_width=True)
if show_sv_socio:
"SVI - Socioeconomic Status"
st.altair_chart(svi_socio_chart, use_container_width=True)
if show_sv_household:
"SVI - Household Characteristics"
st.altair_chart(svi_house_chart, use_container_width=True)
if show_sv_minority:
"SVI - Racial and Ethnic Minority"
st.altair_chart(svi_minority_chart, use_container_width=True)
if show_sv_housing:
"SVI - Housing Type and Transit"
st.altair_chart(svi_transit_chart, use_container_width=True)
if show_carbon_lost:
"Deforested Carbon (2002-2022)"
st.altair_chart(carbon_loss_chart, use_container_width=True)
if show_human_impact:
"Human Footprint (2017-2021)"
st.altair_chart(hi_chart, use_container_width=True)
st.divider()
footer = st.container()
st.caption("***The label 'established' is inferred from the California Protected Areas Database, which may introduce artifacts. For details on our methodology, please refer to our code: https://github.com/boettiger-lab/ca-30x30.")
st.caption("***Under California’s 30x30 framework, only GAP codes 1 and 2 are counted toward the conservation goal. While our dashboard displays GAP codes 1-4 for reference, the '25.2% of CA Covered' statistic reflects only GAP codes 1 and 2, as designated by CA 30x30 criteria.")
'''
## Credits
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley
License: BSD-2-clause
Data: https://huggingface.co/datasets/boettiger-lab/ca-30x30
### Data sources
- California Protected Areas Database by CA Nature. Data: https://www.californianature.ca.gov/datasets/CAnature::30x30-conserved-areas-terrestrial-2024/about. License: Public Domain
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC
- Fire polygons by CAL FIRE (2022), reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40, data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain
- CDC 2020 Social Vulnerability Index by US Census Track. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain
- Carbon-loss by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
'''
|