catvton-flux-try-on / README.md
xiaozaa's picture
fix the bug of run script
776470c
|
raw
history blame
3.65 kB

catvton-flux

An state-of-the-art virtual try-on solution that combines the power of CATVTON (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer. Also inspired by In-Context LoRA for prompt engineering.

Update

SOTA Dataset


Latest Achievement (2024/11/24):

  • Released FID score and gradio demo
  • CatVton-Flux-Alpha achieved SOTA performance with FID: 5.593255043029785 on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available here

Showcase

Original Garment Result
Original Garment Result
Original Garment Result
Original Garment Result

Model Weights

Hugging Face: 🤗 catvton-flux-alpha

The model weights are trained on the VITON-HD dataset.

Prerequisites

Make sure you are runing the code with VRAM >= 40GB. (I run all my experiments on a 80GB GPU, lower VRAM will cause OOM error. Will support lower VRAM in the future.)

bash
conda create -n flux python=3.10
conda activate flux
pip install -r requirements.txt
huggingface-cli login

Usage

Run the following command to try on an image:

python tryon_inference.py \
--image ./example/person/00008_00.jpg \
--mask ./example/person/00008_00_mask.png \
--garment ./example/garment/00034_00.jpg \
--seed 42 \
--output_tryon test.png \
--steps 30

Run the following command to start a gradio demo:

python app.py

Gradio demo:

Demo

TODO:

  • Release the FID score
  • Add gradio demo
  • Release updated weights with better performance
  • Train a smaller model

Citation

@misc{chong2024catvtonconcatenationneedvirtual,
 title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, 
 author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang},
 year={2024},
 eprint={2407.15886},
 archivePrefix={arXiv},
 primaryClass={cs.CV},
 url={https://arxiv.org/abs/2407.15886}, 
}
@article{lhhuang2024iclora,
  title={In-Context LoRA for Diffusion Transformers},
  author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren},
  journal={arXiv preprint arxiv:2410.23775},
  year={2024}
}

Thanks to Jim for insisting on spatial concatenation. Thanks to dingkang MoonBlvd Stevada for the helpful discussions.

License

  • The code is licensed under the MIT License.
  • The model weights have the same license as Flux.1 Fill and VITON-HD.