File size: 10,001 Bytes
dbb07a8 ee51124 9013417 868779a 7c4bb9b 868779a 9013417 868779a 9013417 dbb07a8 12e9206 dbb07a8 54f30b7 dbb07a8 12e9206 dbb07a8 12e9206 dbb07a8 12e9206 3453c44 4125416 868779a 5f8444c a5b7893 12e9206 dbb07a8 08500ba a5b7893 dbb07a8 46b7408 08500ba dbb07a8 12e9206 dbb07a8 12e9206 dbb07a8 12e9206 3453c44 dbb07a8 12e9206 dbb07a8 e2d5be3 dbb07a8 89f7bfd dbb07a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import cv2
from transformers import ViTImageProcessor, ViTForImageClassification, AutoModelForImageClassification, AutoImageProcessor
import torch
import numpy as np
# import face_recognition
import subprocess
import sys
# subprocess.check_call([sys.executable, "-m", "pip", "install", 'git+https://github.com/bit-guber/retinaface.git', "--force-reinstall"])
# from retinaface import RetinaFace
from deepface import DeepFace
torch.backends.cudnn.benchmark = True
import urllib.request
path = 'https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_default.xml'
urllib.request.urlretrieve(path, path.split('/')[-1])
face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
class Base:
size = 224
scale = 1. / 255.
mean = np.array( [ .5 ] * 3 ).reshape( 1, 1, 1, -1)
std = np.array( [ .5 ] * 3 ).reshape( 1, 1, 1, -1)
resample = 2
class ethnicityConfig(Base):
size = 384
class maskConfig(Base):
resample = 3
mean = np.array( [ .485 ] * 3 ).reshape( 1, 1, 1, -1)
std = np.array( [ .229 ] * 3 ).reshape( 1, 1, 1, -1)
AGE = "nateraw/vit-age-classifier"
GENDER = 'rizvandwiki/gender-classification-2'
ETHNICITY = 'cledoux42/Ethnicity_Test_v003'
MASK = 'DamarJati/Face-Mask-Detection'
BLUR = 'WT-MM/vit-base-blur'
BEARD = 'dima806/beard_face_image_detection'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# base_processor = ViTImageProcessor.from_pretrained( global_path + 'base_processor' )
age_model = ViTForImageClassification.from_pretrained( AGE ).to(device)
gender_model = ViTForImageClassification.from_pretrained( GENDER ).to(device)
beard_model = ViTForImageClassification.from_pretrained( BEARD ).to(device)
blur_model = ViTForImageClassification.from_pretrained( BLUR ).to(device)
# ethnicity_precessor = ViTImageProcessor.from_pretrained( global_path + 'ethnicity' )
ethnicity_model= ViTForImageClassification.from_pretrained( ETHNICITY ).to(device)
# mask_processor = ViTImageProcessor.from_pretrained( global_path + 'mask' )
mask_model = AutoModelForImageClassification.from_pretrained( MASK ).to(device)
from PIL import Image
def normalize( data, mean, std ): # (batchs, nchannels, height, width)
data = (data - mean ) / std
return data.astype(np.float32)
def resize( image, size = 224, resample = 2 ):
# if isinstance(iamge, np.ndarray):
# image = Image.fromarray( image, mode = 'RGB' )
image = image.resize( (size, size), resample = resample )
return np.array( image )
def rescale( data, scale = Base.scale ):
return data * scale
# resize
# rescale
# normalize
def ParallelBatchsPredict( data, MODELS, nbatchs = 16 ):
total = data.shape[0]
# for change channel axis to first format
data = np.transpose( data, ( 0, 3, 1, 2 ) )
count = 0
batchs = [ [] for i in range(len(MODELS)) ]
for i in range( 0, total, nbatchs ):
batch = data[i:i+nbatchs]
count += batch.shape[0]
with torch.no_grad():
batch = torch.from_numpy( batch ).to(device)
for _, model in enumerate(MODELS):
logits = model( batch ).logits.softmax(1).argmax(1).tolist()
for x in logits:
batchs[_].append( model.config.id2label[ x ] )
assert count == total
return batchs
# model arrange
# age
# gender
# blur
# beard
# changle processor
# Ethnicity
# change processor
# Mask
def AnalysisFeatures(rawFaces): # list[ PIL.Image ]
if len(rawFaces) == 0:
return [ [] ]* 6
baseProcessed = np.array([ resize(x, size = Base.size, resample = Base.resample ) for x in rawFaces])
baseProcessed = rescale( baseProcessed )
baseProcessed = normalize( baseProcessed, Base.mean, Base.std )
ages, genders, beards, blurs = ParallelBatchsPredict(baseProcessed, [age_model, gender_model, beard_model, blur_model] )
EthncityProcessed = np.array([ resize(x, size = ethnicityConfig.size, resample = ethnicityConfig.resample ) for x in rawFaces])
EthncityProcessed = rescale( EthncityProcessed )
EthncityProcessed = normalize( EthncityProcessed, ethnicityConfig.mean, ethnicityConfig.std )
ethncities = ParallelBatchsPredict(EthncityProcessed, [ethnicity_model])[0]
MaskProcessed = np.array([ resize(x, size = maskConfig.size, resample = maskConfig.resample ) for x in rawFaces])
MaskProcessed = rescale( MaskProcessed )
MaskProcessed = normalize( MaskProcessed, maskConfig.mean, maskConfig.std )
masks = ParallelBatchsPredict(MaskProcessed, [mask_model])[0]
beards = [True if beard == 'Beard' else False for beard in beards]
blurs = [True if blur == 'blurry' else False for blur in blurs]
masks = [True if mask == 'WithMask' else False for mask in masks]
return ages, genders, beards, blurs, ethncities, masks
import gradio as gr
def frameWrapper( facesCo, ages, genders, beards, blurs, ethncities, masks ):
return { 'identifiedPersonCount': len(facesCo), 'value': [ { 'coordinate': { 'x': x, 'y': y, 'h': h, 'w':w }, 'ageGroup': age, 'gender': gender, 'beardPresent':beard, 'blurOccur': blur, 'ethncity': ethncity, 'maskPresent': mask } for (x, y, w, h), age, gender, beard, blur, ethncity, mask in zip( facesCo, ages, genders, beards, blurs, ethncities, masks ) ] }
def postProcessed( rawfaces, maximunSize, minSize = 30 ):
faces = []
for (x, y, w, h) in rawfaces:
x1 = x if x<maximunSize[0] else maximunSize[0]
y1 = y if y<maximunSize[1] else maximunSize[1]
x2 = w+x if w+x<maximunSize[0] else maximunSize[0]
y2 = h+y if h+y<maximunSize[1] else maximunSize[1]
if x2-x1 > minSize and y2-y1 >minSize:
faces.append( (x, y, w, h) )
return faces
def image_inference(image):
if sum(image.shape) == 0:
return image, { 'ErrorFound': 'ImageNotFound' }
# Convert into grayscale
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces
# rawfaces = face_cascade.detectMultiScale(gray, 1.05, 5, minSize = (30, 30))
# image = np.asarray( image )
# Draw rectangle around the faces
# rawfaces = postProcessed( rawfaces, image.shape[:2] )
# rawfaces = face_recognition.face_locations( image, number_of_times_to_upsample = 1 , model="hog")
# rawfaces = []
# for name, keys in RetinaFace.detect_faces( image ).items():
# rawfaces.append( keys['facial_area'] )
# faces = [ image[top:bottom, left:right].copy() for (top, left, bottom, right) in rawfaces ]
# faces = RetinaFace.extract_faces( image, align = True)
# faces_mean = [ x.mean() for x in faces ]
rawfaces = DeepFace.extract_faces( image )
faces = [ x['face'] for x in rawfaces]
rawfaces = [ (x['facial_area']['x'], x['facial_area']['y'], x['facial_area']['w'], x['facial_area']['h']) for x in rawfaces ]
# faces = [ image[x:w+x, y:h+y].copy() for (x, y, w, h) in rawfaces ]
faces = [ Image.fromarray(x, mode = 'RGB') for x in faces ]
ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( faces )
annotatedImage = image.copy()
for (x, y, w, h) in rawfaces:
cv2.rectangle(annotatedImage, (x, x+w), (y, y+h), (255, 0, 0), 5)
return Image.fromarray(annotatedImage, mode = 'RGB'), frameWrapper( rawfaces, ages, genders, beards, blurs, ethncities, masks )
# return frameWrapper( rawfaces, ages, genders, beards, blurs, ethncities, masks )
def video_inference(video_path):
global_facesCo = []
global_faces = []
cap = cv2.VideoCapture(video_path)
frameCount = 0
while(cap.isOpened()):
_, img = cap.read()
# try:
# Convert into grayscale
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# except:
# break
# Detect faces
# rawfaces = face_cascade.detectMultiScale(gray, 1.05, 6, minSize = (30, 30))
try:
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
image = np.asarray( image )
except:
break
# rawfaces = postProcessed( rawfaces, image.shape[:2] )
rawfaces = []
for name, keys in RetinaFace.detect_faces( image ).items():
rawfaces.append( keys['facial_area'] )
# rawfaces = face_recognition.face_locations( image, number_of_times_to_upsample = 1 , model="hog")
# Draw rectangle around the faces
# https://stackoverflow.com/questions/15589517/how-to-crop-an-image-in-opencv-using-python for fliping axis
global_facesCo.append( rawfaces )
for (top, left, bottom, right) in rawfaces:
# face = image[x:w+x, y:h+y].copy()
face = image[top:bottom, left:right].copy()
global_faces.append(Image.fromarray( face , mode = 'RGB') )
ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( global_faces )
total_extraction = []
for facesCo in global_facedsCo:
length = len(facesCo)
total_extraction.append( frameWrapper( facesCo, ages[:length], genders[:length], beards[:length], blurs[:length], ethncities[:length], masks[:length] ) )
ages, genders, beards, blurs, ethncities, masks = ages[length:], genders[length:], beards[length:], blurs[length:], ethncities[length:], masks[length:]
return total_extraction
css = """
.outputJSON{
overflow: scroll;
}
"""
imageHander = gr.Interface( fn = image_inference, inputs = gr.Image(type="numpy", sources = 'upload'), outputs = ['image', gr.JSON(elem_classes = 'outputJSON')], css = css )
videoHander = gr.Interface( fn = video_inference, inputs = gr.Video(sources = 'upload', max_length = 30, include_audio = False), outputs = 'json' )
demo = gr.TabbedInterface( [imageHander, videoHander], tab_names = [ 'Image-to-Features', 'Video-to-Features' ], title = 'Facial Feature Extraction' )
demo.launch() |