bit-guber commited on
Commit
12e9206
·
verified ·
1 Parent(s): 3833b6e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -17
app.py CHANGED
@@ -2,6 +2,7 @@ import cv2
2
  from transformers import ViTImageProcessor, ViTForImageClassification, AutoModelForImageClassification, AutoImageProcessor
3
  import torch
4
  import numpy as np
 
5
 
6
  torch.backends.cudnn.benchmark = True
7
 
@@ -144,18 +145,21 @@ def postProcessed( rawfaces, maximunSize, minSize = 30 ):
144
  faces.append( (x, y, w, h) )
145
  return faces
146
  def image_inference(image):
 
147
 
148
  if sum(image.shape) == 0:
149
  return { 'ErrorFound': 'ImageNotFound' }
150
  # Convert into grayscale
151
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
152
  # Detect faces
153
- rawfaces = face_cascade.detectMultiScale(gray, 1.05, 5, minSize = (30, 30))
154
- image = np.asarray( image )
155
  # Draw rectangle around the faces
156
- rawfaces = postProcessed( rawfaces, image.shape[:2] )
157
-
158
- faces = [ image[x:w+x, y:h+y].copy() for (x, y, w, h) in rawfaces ]
 
 
159
  faces = [ Image.fromarray(x, mode = 'RGB') for x in faces ]
160
  ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( faces )
161
 
@@ -174,23 +178,26 @@ def video_inference(video_path):
174
  while(cap.isOpened()):
175
  _, img = cap.read()
176
 
177
- try:
178
  # Convert into grayscale
179
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
 
 
 
 
 
 
180
  except:
181
  break
182
- # Detect faces
183
- rawfaces = face_cascade.detectMultiScale(gray, 1.05, 6, minSize = (30, 30))
184
- image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
185
- image = np.asarray( image )
186
-
187
- rawfaces = postProcessed( rawfaces, image.shape[:2] )
188
-
189
  # Draw rectangle around the faces
190
  # https://stackoverflow.com/questions/15589517/how-to-crop-an-image-in-opencv-using-python for fliping axis
191
  global_facesCo.append( rawfaces )
192
- for (x, y, w, h) in rawfaces:
193
- face = image[x:w+x, y:h+y].copy()
 
194
  global_faces.append(Image.fromarray( face , mode = 'RGB') )
195
 
196
  ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( global_faces )
 
2
  from transformers import ViTImageProcessor, ViTForImageClassification, AutoModelForImageClassification, AutoImageProcessor
3
  import torch
4
  import numpy as np
5
+ import face_recognition
6
 
7
  torch.backends.cudnn.benchmark = True
8
 
 
145
  faces.append( (x, y, w, h) )
146
  return faces
147
  def image_inference(image):
148
+
149
 
150
  if sum(image.shape) == 0:
151
  return { 'ErrorFound': 'ImageNotFound' }
152
  # Convert into grayscale
153
+ # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
154
  # Detect faces
155
+ # rawfaces = face_cascade.detectMultiScale(gray, 1.05, 5, minSize = (30, 30))
156
+ # image = np.asarray( image )
157
  # Draw rectangle around the faces
158
+ # rawfaces = postProcessed( rawfaces, image.shape[:2] )
159
+
160
+ rawfaces = face_recognition.face_locations( image , model="cnn")
161
+ faces = [ image[top:bottom, left:right].copy() for (top, left, bottom, right) in rawfaces ]
162
+ # faces = [ image[x:w+x, y:h+y].copy() for (x, y, w, h) in rawfaces ]
163
  faces = [ Image.fromarray(x, mode = 'RGB') for x in faces ]
164
  ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( faces )
165
 
 
178
  while(cap.isOpened()):
179
  _, img = cap.read()
180
 
181
+ # try:
182
  # Convert into grayscale
183
+ # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
184
+ # except:
185
+ # break
186
+ # Detect faces
187
+ # rawfaces = face_cascade.detectMultiScale(gray, 1.05, 6, minSize = (30, 30))
188
+ try:
189
+ image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
190
+ image = np.asarray( image )
191
  except:
192
  break
193
+ # rawfaces = postProcessed( rawfaces, image.shape[:2] )
194
+ rawfaces = face_recognition.face_locations( image , model="cnn")
 
 
 
 
 
195
  # Draw rectangle around the faces
196
  # https://stackoverflow.com/questions/15589517/how-to-crop-an-image-in-opencv-using-python for fliping axis
197
  global_facesCo.append( rawfaces )
198
+ for (top, left, bottom, right) in rawfaces:
199
+ # face = image[x:w+x, y:h+y].copy()
200
+ face = image[top:bottom, left:right].copy()
201
  global_faces.append(Image.fromarray( face , mode = 'RGB') )
202
 
203
  ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( global_faces )