File size: 12,765 Bytes
bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 bd2d698 3a9e36a bd2d698 8fb39f8 bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 ae7a86d bd2d698 b298106 ae7a86d bd2d698 b298106 bd2d698 b298106 bd2d698 e122c3e bd2d698 b298106 bd2d698 39b0c81 bd2d698 b298106 bd2d698 b298106 bd2d698 b298106 ae7a86d bd2d698 ae7a86d bd2d698 b298106 ae7a86d bd2d698 b298106 bd2d698 b298106 bd2d698 ae7a86d bd2d698 cd5ba8d bd2d698 b298106 bd2d698 8fb39f8 bd2d698 52ee73d bd2d698 39b0c81 bd2d698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main
import json
import os
from datetime import datetime, timezone
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi
from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3
from src.utils import (
AutoEvalColumn,
fields,
is_model_on_hub,
make_clickable_names,
plot_elo_mle,
plot_solve_rate,
styled_error,
styled_message,
)
from datasets import load_dataset
TOKEN = os.environ.get("TOKEN", None)
api = HfApi(TOKEN)
df = load_dataset("bigcode/bigcodebench-results", split="train").to_pandas().sort_values("complete", ascending=False)
task_elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="train").to_pandas()
model_elo_mle_df = load_dataset("bigcode/bigcodebench-elo-model-with-tie", split="train").to_pandas()
complete_solve_rate = load_dataset("bigcode/bigcodebench-complete-solve-rate", split="train").to_pandas()
instruct_solve_rate = load_dataset("bigcode/bigcodebench-instruct-solve-rate", split="train").to_pandas()
QUEUE_REPO = "bigcode/bigcodebench-requests"
EVAL_REQUESTS_PATH = "eval-queue"
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
TYPES_LITE = [
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
def add_new_eval(
model: str,
revision: str,
model_type: str,
):
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
print("adding new eval")
eval_entry = {
"model": model,
"revision": revision,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type.split(" ")[1],
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request.json"
print(f"Saving eval request to {out_path}")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# remove the local file
os.remove(out_path)
return styled_message("Your request has been submitted to the evaluation queue!\n")
def select_columns(df, columns):
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_types(df, leaderboard_table, query):
if query == "all":
return df[leaderboard_table.columns]
else:
query = query[0]
filtered_df = df[df["type"].str.contains(query, na=False)]
return filtered_df[leaderboard_table.columns]
def filter_direct_complete(df, leaderboard_table, query):
if query == "all":
return df[leaderboard_table.columns]
if query == "chat template":
return df[~df["direct_complete"]][leaderboard_table.columns]
else:
return df[df["direct_complete"]][leaderboard_table.columns]
def search_table(df, leaderboard_table, query):
filtered_df = df[(df["model"].str.contains(query, case=False))]
return filtered_df[leaderboard_table.columns]
df = make_clickable_names(df)
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Markdown(
"""<div style="text-align: center;"><h1> 🌸<span style='color: #A74E95;'>Big</span><span style='color: #C867B5;'>Code</span><span style='color: #DD71C8;'>Bench</span> Leaderboard🌸</h1></div>\
<br>\
<p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">🤗 Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">⭐ Big Code Models Leaderboard</a>, we compare performance of LLMs on <a href="https://huggingface.co/datasets/bigcode/bigcodebench">BigCodeBench</a> benchmark.</p>
""",
elem_classes="markdown-text",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.Column():
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("🔍 Evaluation Table", id=0):
with gr.Column():
with gr.Accordion("➡️ See All Columns", open=False):
shown_columns = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
]
],
label="",
elem_id="column-select",
interactive=True,
)
# with gr.Column(min_width=780):
with gr.Row():
search_bar = gr.Textbox(
placeholder="🔍 Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
filter_types_columns = gr.Radio(
label="⏚ Filter model types",
choices=["all", "🟢 base", "🔶 instruction-tuned"], #, "EXT external-evaluation"],
value="all",
elem_id="filter-columns",
)
filter_prompting_columns = gr.Radio(
label="⏚ Filter prompting",
choices=["all", "chat template", "direct complete"],
value="all",
elem_id="filter-direct-complete",
)
leaderboard_df = gr.components.Dataframe(
value=df[
[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value
],
headers=[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
)
hidden_leaderboard_df = gr.components.Dataframe(
value=df,
headers=COLS,
datatype=["str" for _ in range(len(COLS))],
visible=False,
)
search_bar.submit(
search_table,
[hidden_leaderboard_df, leaderboard_df, search_bar],
leaderboard_df,
)
filter_types_columns.change(
filter_types,
[hidden_leaderboard_df, leaderboard_df, filter_types_columns],
leaderboard_df,
)
filter_prompting_columns.change(
filter_direct_complete,
[hidden_leaderboard_df, leaderboard_df, filter_prompting_columns],
leaderboard_df,
)
shown_columns.change(
select_columns,
[hidden_leaderboard_df, shown_columns],
leaderboard_df,
)
gr.Markdown(
"""
**Notes:**
- _Complete_ vs _Instruct_:
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
- <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
- `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
- `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on `BigCodeBench-Complete`, which starts from 1000 and is boostrapped 500 times.
- `size` is the amount of activated model weight during inference.
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
- For more details check the 📝 About section.
- Models with a 🔴 symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab.
""",
elem_classes="markdown-text",
)
with gr.TabItem("📊 Elo Rating", id=1):
with gr.Column():
with gr.Group():
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
task_elo_map = gr.Plot()
demo.load(plot_elo_mle, [gr.Dataframe(task_elo_mle_df, visible=False)], task_elo_map)
with gr.Group():
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
model_elo_map = gr.Plot()
demo.load(plot_elo_mle, [gr.Dataframe(model_elo_mle_df, visible=False)], model_elo_map)
with gr.TabItem("🧩 Solve Rate", id=2):
with gr.Column():
complete_map = gr.Plot()
demo.load(plot_solve_rate, [gr.Dataframe(complete_solve_rate, visible=False),
gr.Textbox("Complete", visible=False),
], complete_map)
instruct_map = gr.Plot()
demo.load(plot_solve_rate, [gr.Dataframe(instruct_solve_rate, visible=False),
gr.Textbox("Instruct", visible=False),
], instruct_map)
with gr.TabItem("📝 About", id=3):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.TabItem("Submit Results 🚀", id=4):
gr.Markdown(SUBMISSION_TEXT_3)
demo.launch()
|