Terry Zhuo commited on
Commit
bd2d698
·
1 Parent(s): dcb1cb4
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Bigcodebench Leaderboard
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
@@ -7,38 +7,4 @@ sdk: gradio
7
  app_file: app.py
8
  pinned: false
9
  license: apache-2.0
10
- ---
11
-
12
- # Start the configuration
13
-
14
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
15
-
16
- Results files should have the following format and be stored as json files:
17
- ```json
18
- {
19
- "config": {
20
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
21
- "model_name": "path of the model on the hub: org/model",
22
- "model_sha": "revision on the hub",
23
- },
24
- "results": {
25
- "task_name": {
26
- "metric_name": score,
27
- },
28
- "task_name2": {
29
- "metric_name": score,
30
- }
31
- }
32
- }
33
- ```
34
-
35
- Request files are created automatically by this tool.
36
-
37
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
38
-
39
- # Code logic for more complex edits
40
-
41
- You'll find
42
- - the main table' columns names and properties in `src/display/utils.py`
43
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
- - teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: BigCodeBench Leaderboard
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
 
7
  app_file: app.py
8
  pinned: false
9
  license: apache-2.0
10
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,345 +1,271 @@
1
- import subprocess
 
 
 
 
2
  import gradio as gr
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- NUMERIC_INTERVALS,
22
- TYPES,
23
  AutoEvalColumn,
24
- ModelType,
25
  fields,
26
- WeightType,
27
- Precision
 
 
 
 
28
  )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
- from src.submission.submit import add_new_eval
32
-
33
-
34
- def restart_space():
35
- API.restart_space(repo_id=REPO_ID)
36
-
37
- try:
38
- print(EVAL_REQUESTS_PATH)
39
- snapshot_download(
40
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
- )
42
- except Exception:
43
- restart_space()
44
- try:
45
- print(EVAL_RESULTS_PATH)
46
- snapshot_download(
47
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
- )
49
- except Exception:
50
- restart_space()
51
-
52
-
53
- raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
- leaderboard_df = original_df.copy()
55
-
56
- (
57
- finished_eval_queue_df,
58
- running_eval_queue_df,
59
- pending_eval_queue_df,
60
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
-
63
- # Searching and filtering
64
- def update_table(
65
- hidden_df: pd.DataFrame,
66
- columns: list,
67
- type_query: list,
68
- precision_query: str,
69
- size_query: list,
70
- show_deleted: bool,
71
- query: str,
72
  ):
73
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
74
- filtered_df = filter_queries(query, filtered_df)
75
- df = select_columns(filtered_df, columns)
76
- return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
 
 
78
 
79
- def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
80
- return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
81
 
82
 
83
- def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
84
  always_here_cols = [
85
  AutoEvalColumn.model_type_symbol.name,
86
  AutoEvalColumn.model.name,
87
  ]
88
  # We use COLS to maintain sorting
89
  filtered_df = df[
90
- always_here_cols + [c for c in COLS if c in df.columns and c in columns]
91
  ]
92
  return filtered_df
93
 
94
 
95
- def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
96
- final_df = []
97
- if query != "":
98
- queries = [q.strip() for q in query.split(";")]
99
- for _q in queries:
100
- _q = _q.strip()
101
- if _q != "":
102
- temp_filtered_df = search_table(filtered_df, _q)
103
- if len(temp_filtered_df) > 0:
104
- final_df.append(temp_filtered_df)
105
- if len(final_df) > 0:
106
- filtered_df = pd.concat(final_df)
107
- filtered_df = filtered_df.drop_duplicates(
108
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
109
- )
110
-
111
- return filtered_df
112
-
113
-
114
- def filter_models(
115
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
116
- ) -> pd.DataFrame:
117
- # Show all models
118
- if show_deleted:
119
- filtered_df = df
120
- else: # Show only still on the hub models
121
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
122
 
123
- type_emoji = [t[0] for t in type_query]
124
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
125
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
126
 
127
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
128
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
129
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
130
- filtered_df = filtered_df.loc[mask]
131
 
132
- return filtered_df
133
 
 
134
 
 
 
 
 
135
  demo = gr.Blocks(css=custom_css)
136
  with demo:
137
- gr.HTML(TITLE)
138
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
 
 
 
 
 
 
139
 
140
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
141
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
142
- with gr.Row():
143
- with gr.Column():
144
- with gr.Row():
145
- search_bar = gr.Textbox(
146
- placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
147
- show_label=False,
148
- elem_id="search-bar",
149
- )
150
- with gr.Row():
151
- shown_columns = gr.CheckboxGroup(
152
- choices=[
153
- c.name
154
- for c in fields(AutoEvalColumn)
155
- if not c.hidden and not c.never_hidden
156
- ],
157
- value=[
158
- c.name
159
- for c in fields(AutoEvalColumn)
160
- if c.displayed_by_default and not c.hidden and not c.never_hidden
161
- ],
162
- label="Select columns to show",
163
- elem_id="column-select",
164
- interactive=True,
165
- )
166
- with gr.Row():
167
- deleted_models_visibility = gr.Checkbox(
168
- value=False, label="Show gated/private/deleted models", interactive=True
169
- )
170
- with gr.Column(min_width=320):
171
- #with gr.Box(elem_id="box-filter"):
172
- filter_columns_type = gr.CheckboxGroup(
173
- label="Model types",
174
- choices=[t.to_str() for t in ModelType],
175
- value=[t.to_str() for t in ModelType],
176
- interactive=True,
177
- elem_id="filter-columns-type",
178
- )
179
- filter_columns_precision = gr.CheckboxGroup(
180
- label="Precision",
181
- choices=[i.value.name for i in Precision],
182
- value=[i.value.name for i in Precision],
183
- interactive=True,
184
- elem_id="filter-columns-precision",
185
- )
186
- filter_columns_size = gr.CheckboxGroup(
187
- label="Model sizes (in billions of parameters)",
188
- choices=list(NUMERIC_INTERVALS.keys()),
189
- value=list(NUMERIC_INTERVALS.keys()),
190
- interactive=True,
191
- elem_id="filter-columns-size",
192
- )
193
-
194
- leaderboard_table = gr.components.Dataframe(
195
- value=leaderboard_df[
196
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
197
- + shown_columns.value
198
- ],
199
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
- datatype=TYPES,
201
- elem_id="leaderboard-table",
202
- interactive=False,
203
- visible=True,
204
- )
205
-
206
- # Dummy leaderboard for handling the case when the user uses backspace key
207
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
208
- value=original_df[COLS],
209
- headers=COLS,
210
- datatype=TYPES,
211
- visible=False,
212
- )
213
- search_bar.submit(
214
- update_table,
215
- [
216
- hidden_leaderboard_table_for_search,
217
- shown_columns,
218
- filter_columns_type,
219
- filter_columns_precision,
220
- filter_columns_size,
221
- deleted_models_visibility,
222
- search_bar,
223
- ],
224
- leaderboard_table,
225
- )
226
- for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
227
- selector.change(
228
- update_table,
229
- [
230
- hidden_leaderboard_table_for_search,
231
- shown_columns,
232
- filter_columns_type,
233
- filter_columns_precision,
234
- filter_columns_size,
235
- deleted_models_visibility,
236
- search_bar,
237
- ],
238
- leaderboard_table,
239
- queue=True,
240
- )
241
-
242
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
243
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
244
-
245
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
246
- with gr.Column():
247
- with gr.Row():
248
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
249
-
250
- with gr.Column():
251
- with gr.Accordion(
252
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
253
- open=False,
254
- ):
255
- with gr.Row():
256
- finished_eval_table = gr.components.Dataframe(
257
- value=finished_eval_queue_df,
258
- headers=EVAL_COLS,
259
- datatype=EVAL_TYPES,
260
- row_count=5,
261
  )
262
- with gr.Accordion(
263
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
264
- open=False,
265
- ):
266
  with gr.Row():
267
- running_eval_table = gr.components.Dataframe(
268
- value=running_eval_queue_df,
269
- headers=EVAL_COLS,
270
- datatype=EVAL_TYPES,
271
- row_count=5,
272
  )
273
-
274
- with gr.Accordion(
275
- f" Pending Evaluation Queue ({len(pending_eval_queue_df)})",
276
- open=False,
277
- ):
278
- with gr.Row():
279
- pending_eval_table = gr.components.Dataframe(
280
- value=pending_eval_queue_df,
281
- headers=EVAL_COLS,
282
- datatype=EVAL_TYPES,
283
- row_count=5,
284
  )
285
- with gr.Row():
286
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
287
-
288
- with gr.Row():
289
- with gr.Column():
290
- model_name_textbox = gr.Textbox(label="Model name")
291
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
292
- model_type = gr.Dropdown(
293
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
294
- label="Model type",
295
- multiselect=False,
296
- value=None,
297
- interactive=True,
 
 
 
 
298
  )
299
 
300
- with gr.Column():
301
- precision = gr.Dropdown(
302
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
303
- label="Precision",
304
- multiselect=False,
305
- value="float16",
306
- interactive=True,
307
  )
308
- weight_type = gr.Dropdown(
309
- choices=[i.value.name for i in WeightType],
310
- label="Weights type",
311
- multiselect=False,
312
- value="Original",
313
- interactive=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
  )
315
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
316
-
317
- submit_button = gr.Button("Submit Eval")
318
- submission_result = gr.Markdown()
319
- submit_button.click(
320
- add_new_eval,
321
- [
322
- model_name_textbox,
323
- base_model_name_textbox,
324
- revision_name_textbox,
325
- precision,
326
- weight_type,
327
- model_type,
328
- ],
329
- submission_result,
330
- )
331
 
332
- with gr.Row():
333
- with gr.Accordion("📙 Citation", open=False):
334
- citation_button = gr.Textbox(
335
- value=CITATION_BUTTON_TEXT,
336
- label=CITATION_BUTTON_LABEL,
337
- lines=20,
338
- elem_id="citation-button",
339
- show_copy_button=True,
340
- )
341
-
342
- scheduler = BackgroundScheduler()
343
- scheduler.add_job(restart_space, "interval", seconds=1800)
344
- scheduler.start()
345
- demo.queue(default_concurrency_limit=40).launch()
 
 
 
 
 
 
 
 
 
 
1
+ # some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main
2
+ import json
3
+ import os
4
+ from datetime import datetime, timezone
5
+
6
  import gradio as gr
7
  import pandas as pd
8
+ import requests
9
+ from huggingface_hub import HfApi
10
+
11
+ from src.css_html import custom_css
12
+ from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3
13
+ from src.utils import (
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  AutoEvalColumn,
 
15
  fields,
16
+ is_model_on_hub,
17
+ make_clickable_names,
18
+ plot_elo_mle,
19
+ plot_solve_rate,
20
+ styled_error,
21
+ styled_message,
22
  )
23
+ from datasets import load_dataset
24
+ TOKEN = os.environ.get("HF_TOKEN", None)
25
+ api = HfApi(TOKEN)
26
+ df = load_dataset("bigcode/bigcodebench-results", split="train").to_pandas().sort_values("complete", ascending=False)
27
+ elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="train").to_pandas()
28
+ complete_solve_rate = load_dataset("bigcode/bigcodebench-complete-solve-rate", split="train").to_pandas()
29
+ instruct_solve_rate = load_dataset("bigcode/bigcodebench-instruct-solve-rate", split="train").to_pandas()
30
+
31
+ QUEUE_REPO = "bigcode/bigcodebench-requests"
32
+ EVAL_REQUESTS_PATH = "eval-queue"
33
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
34
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
35
+ COLS_LITE = [
36
+ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
37
+ ]
38
+ TYPES_LITE = [
39
+ c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
40
+ ]
41
+
42
+
43
+ def add_new_eval(
44
+ model: str,
45
+ revision: str,
46
+ model_type: str,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ):
48
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
49
+
50
+ if model_type is None or model_type == "":
51
+ return styled_error("Please select a model type.")
52
+
53
+ # check the model actually exists before adding the eval
54
+ if revision == "":
55
+ revision = "main"
56
+
57
+ model_on_hub, error = is_model_on_hub(model, revision)
58
+ if not model_on_hub:
59
+ return styled_error(f'Model "{model}" {error}')
60
+
61
+ print("adding new eval")
62
+
63
+ eval_entry = {
64
+ "model": model,
65
+ "revision": revision,
66
+ "status": "PENDING",
67
+ "submitted_time": current_time,
68
+ "model_type": model_type.split(" ")[1],
69
+ }
70
+
71
+ user_name = ""
72
+ model_path = model
73
+ if "/" in model:
74
+ user_name = model.split("/")[0]
75
+ model_path = model.split("/")[1]
76
+
77
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
78
+ os.makedirs(OUT_DIR, exist_ok=True)
79
+ out_path = f"{OUT_DIR}/{model_path}_eval_request.json"
80
+ print(f"Saving eval request to {out_path}")
81
+
82
+ with open(out_path, "w") as f:
83
+ f.write(json.dumps(eval_entry))
84
+
85
+ api.upload_file(
86
+ path_or_fileobj=out_path,
87
+ path_in_repo=out_path.split("eval-queue/")[1],
88
+ repo_id=QUEUE_REPO,
89
+ repo_type="dataset",
90
+ commit_message=f"Add {model} to eval queue",
91
+ )
92
 
93
+ # remove the local file
94
+ os.remove(out_path)
95
 
96
+ return styled_message("Your request has been submitted to the evaluation queue!\n")
 
97
 
98
 
99
+ def select_columns(df, columns):
100
  always_here_cols = [
101
  AutoEvalColumn.model_type_symbol.name,
102
  AutoEvalColumn.model.name,
103
  ]
104
  # We use COLS to maintain sorting
105
  filtered_df = df[
106
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns]
107
  ]
108
  return filtered_df
109
 
110
 
111
+ def filter_items(df, leaderboard_table, query):
112
+ if query == "all":
113
+ return df[leaderboard_table.columns]
114
+ else:
115
+ query = query[0]
116
+ filtered_df = df[df["type"].str.contains(query, na=False)]
117
+ return filtered_df[leaderboard_table.columns]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
 
 
 
119
 
120
+ def search_table(df, leaderboard_table, query):
121
+ filtered_df = df[(df["model"].str.contains(query, case=False))]
122
+ return filtered_df[leaderboard_table.columns]
 
123
 
 
124
 
125
+ df = make_clickable_names(df)
126
 
127
+ # <div style='background-color: #F5F1CB; text-align: center; padding: 10px;'>
128
+ # <p><b>Warning</b>: This leaderboard is not regularily updated with the latest instruction-tuned code models, check the <b>Submit Results</b> section for submitting new evaluation results.
129
+ # You can also check other code leaderboards like <a href="https://evalplus.github.io/leaderboard.html">EvalPlus</a> & <a href="https://huggingface.co/spaces/mike-ravkine/can-ai-code-results">Can-AI-Code</a> .</p>
130
+ # </div>
131
  demo = gr.Blocks(css=custom_css)
132
  with demo:
133
+ with gr.Row():
134
+ gr.Markdown(
135
+ """<div style="text-align: center;"><h1> 🌸<span style='color: #A74E95;'>Big</span><span style='color: #C867B5;'>Code</span><span style='color: #DD71C8;'>Bench</span> Leaderboard🌸</h1></div>\
136
+ <br>\
137
+ <p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">🤗 Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">🤗 Big Code Models Leaderboard 🏋️</a>, we compare performance of LLMs on <a href="https://huggingface.co/datasets/bigcode/bigcodebench">BigCodeBench</a> benchmark.</p>
138
+ """,
139
+ elem_classes="markdown-text",
140
+ )
141
 
142
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
143
+ with gr.Column():
144
+ with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
145
+ with gr.TabItem("🔍 Evaluation table", id=0):
146
+ with gr.Column():
147
+ with gr.Accordion("➡️ See All Columns", open=False):
148
+ shown_columns = gr.CheckboxGroup(
149
+ choices=[
150
+ c
151
+ for c in COLS
152
+ if c
153
+ not in [
154
+ AutoEvalColumn.dummy.name,
155
+ AutoEvalColumn.model.name,
156
+ AutoEvalColumn.model_type_symbol.name,
157
+ ]
158
+ ],
159
+ value=[
160
+ c
161
+ for c in COLS_LITE
162
+ if c
163
+ not in [
164
+ AutoEvalColumn.dummy.name,
165
+ AutoEvalColumn.model.name,
166
+ AutoEvalColumn.model_type_symbol.name,
167
+ ]
168
+ ],
169
+ label="",
170
+ elem_id="column-select",
171
+ interactive=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  )
173
+ # with gr.Column(min_width=780):
 
 
 
174
  with gr.Row():
175
+ search_bar = gr.Textbox(
176
+ placeholder="🔍 Search for your model and press ENTER...",
177
+ show_label=False,
178
+ elem_id="search-bar",
 
179
  )
180
+ filter_columns = gr.Radio(
181
+ label="⏚ Filter model types",
182
+ choices=["all", "🟢 base", "🔶 instruction-tuned", "EXT external-evaluation"],
183
+ value="all",
184
+ elem_id="filter-columns",
 
 
 
 
 
 
185
  )
186
+
187
+ leaderboard_df = gr.components.Dataframe(
188
+ value=df[
189
+ [
190
+ AutoEvalColumn.model_type_symbol.name,
191
+ AutoEvalColumn.model.name,
192
+ ]
193
+ + shown_columns.value
194
+ ],
195
+ headers=[
196
+ AutoEvalColumn.model_type_symbol.name,
197
+ AutoEvalColumn.model.name,
198
+ ]
199
+ + shown_columns.value,
200
+ datatype=TYPES,
201
+ elem_id="leaderboard-table",
202
+ interactive=False,
203
  )
204
 
205
+ hidden_leaderboard_df = gr.components.Dataframe(
206
+ value=df,
207
+ headers=COLS,
208
+ datatype=["str" for _ in range(len(COLS))],
209
+ visible=False,
 
 
210
  )
211
+ search_bar.submit(
212
+ search_table,
213
+ [hidden_leaderboard_df, leaderboard_df, search_bar],
214
+ leaderboard_df,
215
+ )
216
+ filter_columns.change(
217
+ filter_items,
218
+ [hidden_leaderboard_df, leaderboard_df, filter_columns],
219
+ leaderboard_df,
220
+ )
221
+ shown_columns.change(
222
+ select_columns,
223
+ [hidden_leaderboard_df, shown_columns],
224
+ leaderboard_df,
225
+ )
226
+ # <li>
227
+ # <i>Complete</i> vs <i>Instruct</i>:
228
+ # <br />
229
+ # <i><strong><u>Complete</u></strong></i>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
230
+ # <br />
231
+ # <i><strong><u>Instruct</u></i> (🔥Vibe Check🔥)</strong>: Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
232
+ # </li>
233
+ gr.Markdown(
234
+ """
235
+ **Notes:**
236
+ - _Complete_ vs _Instruct_:
237
+ - <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
238
+ - <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
239
+ - `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
240
+ - `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on `BigCodeBench-Complete`.
241
+ - `size` is the amount of activated model weight during inference.
242
+ - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
243
+ - For more details check the 📝 About section.
244
+ - Models with a 🔴 symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab.
245
+ """,
246
+ elem_classes="markdown-text",
247
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
 
249
+ with gr.TabItem("📊 Elo Rating", id=1):
250
+ with gr.Column():
251
+ elo_map = gr.Plot()
252
+ demo.load(plot_elo_mle, [gr.Dataframe(elo_mle_df, visible=False)], elo_map)
253
+
254
+ with gr.TabItem("🧩 Solve Rate", id=2):
255
+ with gr.Column():
256
+ complete_map = gr.Plot()
257
+ demo.load(plot_solve_rate, [gr.Dataframe(complete_solve_rate, visible=False),
258
+ gr.Textbox("Complete", visible=False),
259
+ ], complete_map)
260
+ instruct_map = gr.Plot()
261
+ demo.load(plot_solve_rate, [gr.Dataframe(instruct_solve_rate, visible=False),
262
+ gr.Textbox("Instruction", visible=False),
263
+ ], instruct_map)
264
+
265
+ with gr.TabItem("📝 About", id=3):
266
+ gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
267
+ with gr.TabItem("Submit results 🚀", id=4):
268
+ gr.Markdown(SUBMISSION_TEXT_3)
269
+
270
+
271
+ demo.launch()
requirements.txt CHANGED
@@ -15,4 +15,5 @@ transformers
15
  tokenizers>=0.15.0
16
  git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
  accelerate
18
- sentencepiece
 
 
15
  tokenizers>=0.15.0
16
  git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
  accelerate
18
+ sentencepiece
19
+ plotly
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/{display/css_html_js.py → css_html.py} RENAMED
@@ -1,4 +1,12 @@
 
1
  custom_css = """
 
 
 
 
 
 
 
2
 
3
  .markdown-text {
4
  font-size: 16px !important;
@@ -38,6 +46,12 @@ custom_css = """
38
  padding: 0px;
39
  }
40
 
 
 
 
 
 
 
41
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
  table td:first-child,
43
  table th:first-child {
@@ -62,44 +76,4 @@ table th:first-child {
62
  #scale-logo .download {
63
  display: none;
64
  }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
1
+ # source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/assets/css_html_js.py
2
  custom_css = """
3
+ #changelog-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #changelog-text h2 {
8
+ font-size: 18px !important;
9
+ }
10
 
11
  .markdown-text {
12
  font-size: 16px !important;
 
46
  padding: 0px;
47
  }
48
 
49
+ /* Hides the final AutoEvalColumn */
50
+ #llm-benchmark-tab-table table td:last-child,
51
+ #llm-benchmark-tab-table table th:last-child {
52
+ display: none;
53
+ }
54
+
55
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
56
  table td:first-child,
57
  table th:first-child {
 
76
  #scale-logo .download {
77
  display: none;
78
  }
79
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,135 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- float32 = ModelDetails("float32")
95
- #qt_8bit = ModelDetails("8bit")
96
- #qt_4bit = ModelDetails("4bit")
97
- #qt_GPTQ = ModelDetails("GPTQ")
98
- Unknown = ModelDetails("?")
99
-
100
- def from_str(precision):
101
- if precision in ["torch.float16", "float16"]:
102
- return Precision.float16
103
- if precision in ["torch.bfloat16", "bfloat16"]:
104
- return Precision.bfloat16
105
- if precision in ["float32"]:
106
- return Precision.float32
107
- #if precision in ["8bit"]:
108
- # return Precision.qt_8bit
109
- #if precision in ["4bit"]:
110
- # return Precision.qt_4bit
111
- #if precision in ["GPTQ", "None"]:
112
- # return Precision.qt_GPTQ
113
- return Precision.Unknown
114
-
115
- # Column selection
116
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
- TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
118
- COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
- TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
120
-
121
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
-
124
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
-
126
- NUMERIC_INTERVALS = {
127
- "?": pd.Interval(-1, 0, closed="right"),
128
- "~1.5": pd.Interval(0, 2, closed="right"),
129
- "~3": pd.Interval(2, 4, closed="right"),
130
- "~7": pd.Interval(4, 9, closed="right"),
131
- "~13": pd.Interval(9, 20, closed="right"),
132
- "~35": pd.Interval(20, 45, closed="right"),
133
- "~60": pd.Interval(45, 70, closed="right"),
134
- "70+": pd.Interval(70, 10000, closed="right"),
135
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return raw_data, df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/text_content.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ABOUT_TEXT = """# Context
2
+ We believe that there are three main expectations of a good execution-based programming benchmark:
3
+ 1. The benchmark should be easy to use and efficient in evaluating the fundamental capabilities of LLMs. Repo-level and agent-centric benchmarks (e.g., SWE-bench) are not suitable for this purpose.
4
+ 2. The benchmark should be practical, covering various programming scenarios. Algo-specific benchmarks (e.g., HumanEval and MBPP) are unsuitable. Domain-specific benchmarks (e.g., DS-1000) are also unsuitable for this purpose.
5
+ 3. The benchmark should be challenging, where the tasks require LLMs' strong compositional reasoning capabilities and instruction-following capabilities. The benchmarks with simple tasks (e.g., ODEX) are unsuitable.
6
+
7
+ BigCodeBench is the first benchmark that meets all three expectations. It is an <u>*__easy-to-use__*</u> benchmark that evaluates LLMs with <u>*__practical__*</u> and <u>*__challenging__*</u> programming tasks, accompanied by an end-to-end evaluation framework [`bigcodebench`](https://github.com/bigcode-project/bigcodebench). We aim to assess how well LLMs can solve programming tasks in an open-ended setting, with the following two focuses:
8
+
9
+ - Diverse Function Calls: This design requires LLMs to utilize diverse function calls.
10
+ - Complex Instructions: This design requires LLMs to follow complex instructions.
11
+
12
+
13
+ ### Benchamrks & Prompts
14
+ The dataset has 2 variants:
15
+ 1. `BigCodeBench-Complete`: _Code Completion based on the structured docstrings_.
16
+ 1. `BigCodeBench-Instruct`: _Code Generation based on the NL-oriented instructions_.
17
+
18
+ Figure below shows the example of `Complete` vs `Instruct` prompt. For `Instruct`, we only focus on instruction-tuned LLMs.
19
+
20
+ <img src="https://github.com/bigcode-bench/bigcode-bench.github.io/blob/main/asset/bigcodebench_prompt.png?raw=true" alt="OctoCoder vs Base HumanEval prompt" width="800px">
21
+
22
+ The specific prompt template can be found [here](https://github.com/bigcode-project/bigcodebench/blob/main/bigcodebench/model.py).
23
+
24
+ There are some edge cases:
25
+ - Due to the training flaws in StarCoder2 and Granite-Code, we additionally strip the trailing newlines for model inference.
26
+ - We have not included the `Instruct` results of Granite-Code-Instruct 8B & 3B as they constantly have empty outputs.
27
+
28
+ ### Evaluation Parameters
29
+ - All models were evaluated with the [bigcodebench](https://github.com/bigcode-project/bigcodebench). You can install the [PyPI package](https://pypi.org/project/bigcodebench/).
30
+ To get started, please first set up the environment:
31
+
32
+ ```bash
33
+ # Install to use bigcodebench.evaluate
34
+ pip install bigcodebench --upgrade
35
+ # If you want to use the evaluate locally, you need to install the requirements
36
+ pip install -I -r https://raw.githubusercontent.com/bigcode-project/bigcodebench/main/Requirements/requirements-eval.txt
37
+
38
+ # Install to use bigcodebench.generate
39
+ # You are strongly recommended to install the generate dependencies in a separate environment
40
+ pip install bigcodebench[generate] --upgrade
41
+ ```
42
+
43
+ ### Scoring and Rankings
44
+ - Models are ranked according to Pass@1 using greedy decoding. Setup details can be found <a href="https://github.com/bigcode-project/bigcodebench/blob/main/bigcodebench/generate.py">here</a>.
45
+ - The code to compute Elo rating is based on [Chatbot Arena Notebook](https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR#scrollTo=JdiJbB6pZB1B&line=2&uniqifier=1). We only compute the Elo rating for the `BigCodeBench-Complete` variant.
46
+
47
+ ### Contact
48
+ If you have any questions, feel free to reach out to us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected])
49
+
50
+ ### Citation Information
51
+
52
+ ```bibtex
53
+ @article{bigcodebench,
54
+ title={BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions},
55
+ author={Zhuo, Terry Yue and Vu, Min Chien and Chim, Jenny and Hu, Han and Yu, Wenhao and Widyasari, Ratnadira and Yusuf, Imam Nur Bani and Zhan, Haolan and He, Junda and Paul, Indraneil and Brunner, Simon and Gong, Chen and Hoang, Thong and Zebaze, Armel Randy and Hong, Xiaoheng and Li, Wen-Ding and Kaddour, Jean and Xu, Ming and Zhang, Zhihan and Yadav, Prateek and Jain, Naman and Gu, Alex and Cheng, Zhoujun and Liu, Jiawei and Liu, Qian and Wang, Zijian and Lo, David and Hui, Binyuan and Muennighoff, Niklas and Fried, Daniel and Du, Xiaoning and de Vries, Harm and Von Werra, Leandro},
56
+ year={2024}
57
+ }
58
+ ```
59
+ """
60
+
61
+ SUBMISSION_TEXT = """
62
+ <h1 align="center">
63
+ How to submit models/results to the leaderboard?
64
+ </h1>
65
+ We welcome the community to submit evaluation results of new models. We also provide an experimental feature for submitting models that our team will evaluate on the 🤗 cluster.
66
+
67
+ ## Submitting Models (experimental feature)
68
+ Inspired from the Open LLM Leaderboard, we welcome code models submission from the community that will be automatically evaluated. Please note that this is still an experimental feature.
69
+ Below are some guidlines to follow before submitting your model:
70
+
71
+ #### 1) Make sure you can load your model and tokenizer using AutoClasses:
72
+ ```python
73
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
74
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
75
+ model = AutoModel.from_pretrained("your model name", revision=revision)
76
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
77
+ ```
78
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
79
+ Note: make sure your model is public!
80
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet.
81
+ #### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
82
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
83
+ #### 3) Make sure your model has an open license!
84
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
85
+ #### 4) Fill up your model card
86
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card.
87
+ """
88
+
89
+ SUBMISSION_TEXT_2 = """
90
+ ## Sumbitting Results
91
+ You also have the option for running evaluation yourself and submitting results. These results will be added as non-verified, the authors are however required to upload their generations in case other members want to check.
92
+
93
+ ### 1 - Running Evaluation
94
+
95
+ We wrote a detailed guide for running the evaluation on your model. You can find the it in [bigcode-evaluation-harness/leaderboard](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main/leaderboard). This will generate a json file summarizing the results, in addition to the raw generations and metric files.
96
+
97
+ ### 2- Submitting Results 🚀
98
+
99
+ To submit your results create a **Pull Request** in the community tab to add them under the [folder](https://huggingface.co/spaces/bigcode/bigcodebench-code-evals/tree/main/community_results) `community_results` in this repository:
100
+ - Create a folder called `ORG_MODELNAME_USERNAME` for example `bigcode_my_model_terry`
101
+ - Put your json file with grouped scores from the guide, in addition generations folder and metrics folder in it.
102
+
103
+ The title of the PR should be `[Community Submission] Model: org/model, Username: your_username`, replace org and model with those corresponding to the model you evaluated.
104
+ """
105
+
106
+ SUBMISSION_TEXT_3 = """
107
+ <h1 align="center">
108
+ How to submit models/results to the leaderboard?
109
+ </h1>
110
+ We welcome the community to submit evaluation results of new models. These results will be added as non-verified, the authors are however required to upload their generations in case other members want to check.
111
+
112
+ ### 1 - Running Evaluation
113
+
114
+ We wrote a detailed guide for running the evaluation on your model. You can find the it in [bigcode-evaluation-harness/leaderboard](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main/leaderboard). This will generate a json file summarizing the results, in addition to the raw generations and metric files.
115
+
116
+ ### 2- Submitting Results 🚀
117
+
118
+ To submit your results create a **Pull Request** in the community tab to add them under the [folder](https://huggingface.co/spaces/bigcode/multilingual-code-evals/tree/main/community_results) `community_results` in this repository:
119
+ - Create a folder called `ORG_MODELNAME_USERNAME` for example `bigcode_starcoder_loubnabnl`
120
+ - Put your json file with grouped scores from the guide, in addition generations folder and metrics folder in it.
121
+
122
+ The title of the PR should be `[Community Submission] Model: org/model, Username: your_username`, replace org and model with those corresponding to the model you evaluated.
123
+ """
124
+
125
+ SUBMISSION_TEXT_3="""
126
+ TBD
127
+ """
src/utils.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
2
+ from dataclasses import dataclass
3
+ import plotly.graph_objects as go
4
+ from transformers import AutoConfig
5
+ import plotly.express as px
6
+ import numpy as np
7
+ # These classes are for user facing column names, to avoid having to change them
8
+ # all around the code when a modif is needed
9
+ @dataclass
10
+ class ColumnContent:
11
+ name: str
12
+ type: str
13
+ displayed_by_default: bool
14
+ hidden: bool = False
15
+
16
+
17
+ def fields(raw_class):
18
+ return [
19
+ v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
20
+ ]
21
+
22
+
23
+ @dataclass(frozen=True)
24
+ class AutoEvalColumn: # Auto evals column
25
+ model_type_symbol = ColumnContent("type", "str", True)
26
+ model = ColumnContent("model", "markdown", True)
27
+ size = ColumnContent("size", "number", False)
28
+ complete_score = ColumnContent("complete", "number", True)
29
+ instruct_score = ColumnContent("instruct", "number", True)
30
+ elo_mle = ColumnContent("elo_mle", "number", True)
31
+ dummy = ColumnContent("model", "str", True)
32
+ link = ColumnContent("link", "str", False)
33
+
34
+
35
+ def model_hyperlink(link, model_name):
36
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
37
+
38
+
39
+ def make_clickable_names(df):
40
+ df["model"] = df.apply(
41
+ lambda row: model_hyperlink(row["link"], row["model"]), axis=1
42
+ )
43
+ return df
44
+
45
+
46
+ def plot_elo_mle(df):
47
+ fig = px.scatter(df, x="model", y="rating", error_y="error_y",
48
+ error_y_minus="error_y_minus",
49
+ title="Bootstrap of Elo MLE Estimates (BigCodeBench-Complete)")
50
+ fig.update_layout(xaxis_title="Model",
51
+ yaxis_title="Rating",
52
+ autosize=True,
53
+ # width=1300,
54
+ # height=900,
55
+ )
56
+ return fig
57
+
58
+
59
+ def plot_solve_rate(df, task, rows=30, cols=38):
60
+ keys = df["task_id"]
61
+ values = df["solve_rate"]
62
+
63
+ values = np.array(values)
64
+
65
+ n = len(values)
66
+ if rows is None or cols is None:
67
+ cols = int(math.sqrt(n))
68
+ rows = cols if cols * cols >= n else cols + 1
69
+
70
+ while rows * cols < n:
71
+ cols += 1
72
+
73
+ values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols))
74
+ keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols))
75
+
76
+ hover_text = np.empty_like(values, dtype=object)
77
+ for i in range(rows):
78
+ for j in range(cols):
79
+ if not np.isnan(values[i, j]):
80
+ hover_text[i, j] = f"{keys[i, j]}<br>Solve Rate: {values[i, j]:.2f}"
81
+ else:
82
+ hover_text[i, j] = "NaN"
83
+
84
+ fig = go.Figure(data=go.Heatmap(
85
+ z=values,
86
+ text=hover_text,
87
+ hoverinfo='text',
88
+ colorscale='teal',
89
+ zmin=0,
90
+ zmax=100
91
+ ))
92
+
93
+ fig.update_layout(
94
+ title=f'BigCodeBench-{task}',
95
+ xaxis_nticks=cols,
96
+ yaxis_nticks=rows,
97
+ xaxis=dict(showticklabels=False),
98
+ yaxis=dict(showticklabels=False),
99
+ autosize=True,
100
+ # width=760,
101
+ # height=600,
102
+ )
103
+
104
+ return fig
105
+
106
+
107
+ def styled_error(error):
108
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
109
+
110
+
111
+ def styled_warning(warn):
112
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
113
+
114
+
115
+ def styled_message(message):
116
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
117
+
118
+
119
+ def has_no_nan_values(df, columns):
120
+ return df[columns].notna().all(axis=1)
121
+
122
+
123
+ def has_nan_values(df, columns):
124
+ return df[columns].isna().any(axis=1)
125
+
126
+
127
+ def is_model_on_hub(model_name: str, revision: str) -> bool:
128
+ try:
129
+ AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
130
+ return True, None
131
+
132
+ except ValueError:
133
+ return (
134
+ False,
135
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
136
+ )
137
+
138
+ except Exception as e:
139
+ print(f"Could not get the model config from the hub.: {e}")
140
+ return False, "was not found on hub!"