File size: 12,970 Bytes
bd2d698
 
 
 
 
b298106
 
bd2d698
 
 
 
6c29798
bd2d698
b298106
 
bd2d698
 
 
 
 
 
b298106
bd2d698
3a9e36a
bd2d698
6c29798
 
 
 
 
bd2d698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
bd2d698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
bd2d698
 
b298106
bd2d698
b298106
 
bd2d698
b298106
 
 
 
 
 
bd2d698
b298106
 
 
 
ae7a86d
bd2d698
 
 
 
 
 
b298106
 
ae7a86d
 
 
 
 
 
 
 
 
 
bd2d698
 
 
b298106
 
bd2d698
b298106
 
 
bd2d698
 
 
 
e122c3e
bd2d698
 
 
b298106
 
bd2d698
 
39b0c81
bd2d698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
bd2d698
b298106
bd2d698
 
 
 
b298106
ae7a86d
bd2d698
ae7a86d
bd2d698
 
b298106
ae7a86d
 
 
 
 
 
bd2d698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b298106
 
bd2d698
 
 
 
 
b298106
bd2d698
 
 
 
 
ae7a86d
 
 
 
 
 
 
 
bd2d698
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5ba8d
6c29798
bd2d698
 
 
 
b298106
 
bd2d698
 
8fb39f8
 
 
 
 
 
 
6c29798
8fb39f8
bd2d698
 
 
 
 
 
 
 
52ee73d
bd2d698
 
 
 
6c29798
bd2d698
6c29798
 
 
 
 
 
 
 
 
 
bd2d698
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main
import json
import os
from datetime import datetime, timezone

import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi

from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL
from src.utils import (
    AutoEvalColumn,
    fields,
    is_model_on_hub,
    make_clickable_names,
    plot_elo_mle,
    plot_solve_rate,
    styled_error,
    styled_message,
)
from datasets import load_dataset
TOKEN = os.environ.get("TOKEN", None)
api = HfApi(TOKEN)
df = load_dataset("bigcode/bigcodebench-results", split="train").to_pandas().sort_values("elo_mle", ascending=False)
task_elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="task_no_tie").to_pandas()
bench_elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="benchmark_tie").to_pandas()
complete_solve_rate = load_dataset("bigcode/bigcodebench-solve-rate", split="complete").to_pandas()
instruct_solve_rate = load_dataset("bigcode/bigcodebench-solve-rate", split="instruct").to_pandas()

QUEUE_REPO = "bigcode/bigcodebench-requests"
EVAL_REQUESTS_PATH = "eval-queue"
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [
    c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]
TYPES_LITE = [
    c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
]


def add_new_eval(
    model: str,
    revision: str,
    model_type: str,
):
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # check the model actually exists before adding the eval
    if revision == "":
        revision = "main"

    model_on_hub, error = is_model_on_hub(model, revision)
    if not model_on_hub:
        return styled_error(f'Model "{model}" {error}')

    print("adding new eval")

    eval_entry = {
        "model": model,
        "revision": revision,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type.split(" ")[1],
    }

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request.json"
    print(f"Saving eval request to {out_path}")

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    api.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # remove the local file
    os.remove(out_path)

    return styled_message("Your request has been submitted to the evaluation queue!\n")


def select_columns(df, columns):
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    ]
    return filtered_df


def filter_types(df, leaderboard_table, query):
    if query == "all":
        return df[leaderboard_table.columns]
    else:
        query = query[0]
    filtered_df = df[df["type"].str.contains(query, na=False)]
    return filtered_df[leaderboard_table.columns]


def filter_direct_complete(df, leaderboard_table, query):
    if query == "all":
        return df[leaderboard_table.columns]

    if query == "chat template":
        return df[~df["direct_complete"]][leaderboard_table.columns]
    else:
        return df[df["direct_complete"]][leaderboard_table.columns]


def search_table(df, leaderboard_table, query):
    filtered_df = df[(df["model"].str.contains(query, case=False))]
    return filtered_df[leaderboard_table.columns]


df = make_clickable_names(df)

demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Row():
        gr.Markdown(
            """<div style="text-align: center;"><h1> 🌸<span style='color: #A74E95;'>Big</span><span style='color: #C867B5;'>Code</span><span style='color: #DD71C8;'>Bench</span> Leaderboard🌸</h1></div>\
            <br>\
            <p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">🤗 Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">⭐ Big Code Models Leaderboard</a>, we compare performance of LLMs on <a href="https://huggingface.co/datasets/bigcode/bigcodebench">BigCodeBench</a> benchmark.</p>
""",
            elem_classes="markdown-text",
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Column():
            with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
                with gr.TabItem("🔍 Evaluation Table", id=0):
                    with gr.Column():
                        with gr.Accordion("➡️ See All Columns", open=False):
                            shown_columns = gr.CheckboxGroup(
                                choices=[
                                    c
                                    for c in COLS
                                    if c
                                    not in [
                                        AutoEvalColumn.dummy.name,
                                        AutoEvalColumn.model.name,
                                        AutoEvalColumn.model_type_symbol.name,
                                    ]
                                ],
                                value=[
                                    c
                                    for c in COLS_LITE
                                    if c
                                    not in [
                                        AutoEvalColumn.dummy.name,
                                        AutoEvalColumn.model.name,
                                        AutoEvalColumn.model_type_symbol.name,
                                    ]
                                ],
                                label="",
                                elem_id="column-select",
                                interactive=True,
                            )
                        # with gr.Column(min_width=780):
                        with gr.Row():
                            search_bar = gr.Textbox(
                                placeholder="🔍 Search for your model and press ENTER...",
                                show_label=False,
                                elem_id="search-bar",
                            )
                            filter_types_columns = gr.Radio(
                                label="⏚ Filter model types",
                                choices=["all", "🟢 base", "🔶 instruction-tuned"], #, "EXT external-evaluation"],
                                value="all",
                                elem_id="filter-columns",
                            )
                            filter_prompting_columns = gr.Radio(
                                label="⏚ Filter prompting",
                                choices=["all", "chat template", "direct complete"],
                                value="all",
                                elem_id="filter-direct-complete",
                            )
                    leaderboard_df = gr.components.Dataframe(
                        value=df[
                            [
                                AutoEvalColumn.model_type_symbol.name,
                                AutoEvalColumn.model.name,
                            ]
                            + shown_columns.value
                        ],
                        headers=[
                            AutoEvalColumn.model_type_symbol.name,
                            AutoEvalColumn.model.name,
                        ]
                        + shown_columns.value,
                        datatype=TYPES,
                        elem_id="leaderboard-table",
                        interactive=False,
                    )

                    hidden_leaderboard_df = gr.components.Dataframe(
                        value=df,
                        headers=COLS,
                        datatype=["str" for _ in range(len(COLS))],
                        visible=False,
                    )
                    search_bar.submit(
                        search_table,
                        [hidden_leaderboard_df, leaderboard_df, search_bar],
                        leaderboard_df,
                    )
                    filter_types_columns.change(
                        filter_types,
                        [hidden_leaderboard_df, leaderboard_df, filter_types_columns],
                        leaderboard_df,
                    )
                    filter_prompting_columns.change(
                        filter_direct_complete,
                        [hidden_leaderboard_df, leaderboard_df, filter_prompting_columns],
                        leaderboard_df,
                    )
                    shown_columns.change(
                        select_columns,
                        [hidden_leaderboard_df, shown_columns],
                        leaderboard_df,
                    )
                    gr.Markdown(
                        """
                    **Notes:**
                    - _Complete_ vs _Instruct_:
                        - <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding.
                        - <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code.
                    - `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants.
                    - `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on `BigCodeBench-Complete`, which starts from 1000 and is boostrapped 500 times.
                    - `size` (optional) is the amount of activated model weight during inference.
                    - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination.
                    - For more details check the 📝 About section.
                    """,
                        elem_classes="markdown-text",
                    )

                with gr.TabItem("📊 Elo Rating", id=1):
                    with gr.Column():
                        with gr.Group():
                            gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
                            task_elo_map = gr.Plot()
                            demo.load(plot_elo_mle, [gr.Dataframe(task_elo_mle_df, visible=False)], task_elo_map)
                        with gr.Group():
                            gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
                            model_elo_map = gr.Plot()
                            demo.load(plot_elo_mle, [gr.Dataframe(bench_elo_mle_df, visible=False)], model_elo_map)
                        
                with gr.TabItem("🧩 Solve Rate", id=2):
                    with gr.Column():
                        complete_map = gr.Plot()
                        demo.load(plot_solve_rate, [gr.Dataframe(complete_solve_rate, visible=False),
                                                    gr.Textbox("Complete", visible=False),
                                                    ], complete_map)
                        instruct_map = gr.Plot()
                        demo.load(plot_solve_rate, [gr.Dataframe(instruct_solve_rate, visible=False),
                                                    gr.Textbox("Instruct", visible=False),
                                                    ], instruct_map)
                        
                with gr.TabItem("📝 About", id=3):
                    gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
                with gr.TabItem("Submit/Request Results 🚀", id=4):
                    gr.Markdown(SUBMISSION_TEXT_3)
                    
        with gr.Row():
            with gr.Accordion("📙 Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    lines=20,
                    elem_id="citation-button",
                    show_copy_button=True,
                )

demo.launch()