Spaces:
Runtime error
Runtime error
import json | |
import os | |
import shutil | |
import requests | |
import gradio as gr | |
from huggingface_hub import Repository | |
from text_generation import Client | |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
API_URL = os.environ.get("API_URL") | |
FIM_PREFIX = "<fim_prefix>" | |
FIM_MIDDLE = "<fim_middle>" | |
FIM_SUFFIX = "<fim_suffix>" | |
FIM_INDICATOR = "<FILL_HERE>" | |
FORMATS = """## Model formats | |
The model is pretrained on code and is formatted with special tokens in addition to the pure code data, | |
such as prefixes specifying the source of the file or tokens separating code from a commit message. | |
Use these templates to explore the model's capacities: | |
### 1. Prefixes 🏷️ | |
For pure code files, use any combination of the following prefixes: | |
``` | |
<reponame>REPONAME<filename>FILENAME<gh_stars>STARS\ncode<|endoftext|> | |
``` | |
STARS can be one of: 0, 1-10, 10-100, 100-1000, 1000+ | |
### 2. Commits 💾 | |
The commits data is formatted as follows: | |
``` | |
<commit_before>code<commit_msg>text<commit_after>code<|endoftext|> | |
``` | |
### 3. Jupyter Notebooks 📓 | |
The model is trained on Jupyter notebooks as Python scripts and structured formats like: | |
``` | |
<start_jupyter><jupyter_text>text<jupyter_code>code<jupyter_output>output<jupyter_text> | |
``` | |
### 4. Issues 🐛 | |
We also trained on GitHub issues using the following formatting: | |
``` | |
<issue_start><issue_comment>text<issue_comment>...<issue_closed> | |
``` | |
### 5. Fill-in-the-middle 🧩 | |
Fill in the middle requires rearranging the model inputs. The playground handles this for you - all you need is to specify where to fill: | |
``` | |
code before<FILL_HERE>code after | |
``` | |
""" | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[ | |
gr.themes.GoogleFont("Open Sans"), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
], | |
) | |
client = Client( | |
API_URL, | |
headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
) | |
def generate( | |
prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0 | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
fim_mode = False | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
if FIM_INDICATOR in prompt: | |
fim_mode = True | |
try: | |
prefix, suffix = prompt.split(FIM_INDICATOR) | |
except: | |
raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") | |
prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" | |
stream = client.generate_stream(prompt, **generate_kwargs) | |
if fim_mode: | |
output = prefix | |
else: | |
output = prompt | |
previous_token = "" | |
for response in stream: | |
if fim_mode and response.token.text == "<|endoftext|>": | |
output += (suffix + "\n" + response.token.text) | |
else: | |
output += response.token.text | |
previous_token = response.token.text | |
yield output | |
return output | |
examples = [ | |
"def print_hello_world():", | |
'def fibonacci(n: int) -> int:\n """ Compute the n-th Fibonacci number. """', | |
'from typing import List, Tuple\n\ndef sum_and_product(numbers: List[int]) -> Tuple[int, int]:\n """ Return the sum and the product of the integers in the list as a tuple. Here is the answer of the exercise"""', | |
"class ComplexNumbers:", | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
css = ".generating {visibility: hidden}" | |
monospace_css = """ | |
#q-input textarea { | |
font-family: monospace, 'Consolas', Courier, monospace; | |
} | |
""" | |
custom_output_css = """ | |
#q-output textarea { | |
min-height: 800px; | |
} | |
""" | |
css += share_btn_css + monospace_css + custom_output_css + ".gradio-container {color: black}" | |
description = """ | |
<div style="text-align: center;"> | |
<h1 style='color: black;'> 💫 StarCoder<span style='color: #e6b800;'> - </span>Playground</h1> | |
<p style='color: black;'>This is a demo to generate code with <a href="https://huggingface.co/bigcode/starcoder" style='color: #e6b800;'>StarCoder</a>, a 15B parameter model for code generation in 86 programming languages.</p> | |
</div> | |
""" | |
disclaimer = """⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/bigcode) are provided for demonstration purposes; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card.](hf.co/bigcode)""" | |
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox( | |
placeholder="Enter your prompt here", | |
label="Prompt", | |
elem_id="q-input", | |
) | |
submit = gr.Button("Generate", variant="primary") | |
output = gr.Code(elem_id="q-output", lines=30) | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Row(): | |
column_1, column_2 = gr.Column(), gr.Column() | |
with column_1: | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.2, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=8192, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
with column_2: | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
gr.Markdown(disclaimer) | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=True) | |
loading_icon = gr.HTML(loading_icon_html, visible=True) | |
share_button = gr.Button( | |
"Share to community", elem_id="share-btn", visible=True | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
gr.Markdown(FORMATS) | |
submit.click( | |
generate, | |
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], | |
outputs=[output], | |
) | |
share_button.click(None, [], [], _js=share_js) | |
demo.queue(concurrency_count=16).launch(debug=True) | |