bhlewis's picture
Update app.py
ab836f1 verified
raw
history blame
2.83 kB
import gradio as gr
import numpy as np
import h5py
import faiss
import json
from sentence_transformers import SentenceTransformer
def load_data():
try:
with h5py.File('patent_embeddings.h5', 'r') as f:
embeddings = f['embeddings'][:]
patent_numbers = f['patent_numbers'][:]
metadata = {}
with open('patent_metadata.jsonl', 'r') as f:
for line in f:
data = json.loads(line)
metadata[data['patent_number']] = data
print(f"Embedding shape: {embeddings.shape}")
print(f"Number of patent numbers: {len(patent_numbers)}")
print(f"Number of metadata entries: {len(metadata)}")
return embeddings, patent_numbers, metadata
except FileNotFoundError as e:
print(f"Error: Could not find file. {e}")
raise
except Exception as e:
print(f"An unexpected error occurred while loading data: {e}")
raise
embeddings, patent_numbers, metadata = load_data()
# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Create FAISS index for cosine similarity
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
# Load BERT model for encoding search queries
model = SentenceTransformer('all-mpnet-base-v2')
def search(query, top_k=5):
print(f"Searching for: {query}")
# Encode the query
query_embedding = model.encode([query])[0]
query_embedding = query_embedding / np.linalg.norm(query_embedding)
print(f"Query embedding shape: {query_embedding.shape}")
# Perform similarity search
distances, indices = index.search(np.array([query_embedding]), top_k)
print(f"FAISS search results - Distances: {distances}, Indices: {indices}")
results = []
for i, idx in enumerate(indices[0]):
patent_number = patent_numbers[idx].decode('utf-8')
if patent_number not in metadata:
print(f"Warning: Patent number {patent_number} not found in metadata")
continue
patent_data = metadata[patent_number]
result = f"Patent Number: {patent_number}\n"
text = patent_data.get('text', 'No text available')
result += f"Text: {text[:200]}...\n"
result += f"Similarity Score: {distances[0][i]:.4f}\n\n"
results.append(result)
return "\n".join(results[:top_k])
# Create Gradio interface
iface = gr.Interface(
fn=search,
inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."),
outputs=gr.Textbox(lines=10, label="Search Results"),
title="Patent Similarity Search",
description="Enter a query to find similar patents based on their embeddings."
)
if __name__ == "__main__":
iface.launch()