import gradio as gr import numpy as np import h5py import faiss import json from sentence_transformers import SentenceTransformer def load_data(): try: with h5py.File('patent_embeddings.h5', 'r') as f: embeddings = f['embeddings'][:] patent_numbers = f['patent_numbers'][:] metadata = {} with open('patent_metadata.jsonl', 'r') as f: for line in f: data = json.loads(line) metadata[data['patent_number']] = data print(f"Embedding shape: {embeddings.shape}") print(f"Number of patent numbers: {len(patent_numbers)}") print(f"Number of metadata entries: {len(metadata)}") return embeddings, patent_numbers, metadata except FileNotFoundError as e: print(f"Error: Could not find file. {e}") raise except Exception as e: print(f"An unexpected error occurred while loading data: {e}") raise embeddings, patent_numbers, metadata = load_data() # Normalize embeddings for cosine similarity embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) # Create FAISS index for cosine similarity index = faiss.IndexFlatIP(embeddings.shape[1]) index.add(embeddings) # Load BERT model for encoding search queries model = SentenceTransformer('all-mpnet-base-v2') def search(query, top_k=5): print(f"Searching for: {query}") # Encode the query query_embedding = model.encode([query])[0] query_embedding = query_embedding / np.linalg.norm(query_embedding) print(f"Query embedding shape: {query_embedding.shape}") # Perform similarity search distances, indices = index.search(np.array([query_embedding]), top_k) print(f"FAISS search results - Distances: {distances}, Indices: {indices}") results = [] for i, idx in enumerate(indices[0]): patent_number = patent_numbers[idx].decode('utf-8') if patent_number not in metadata: print(f"Warning: Patent number {patent_number} not found in metadata") continue patent_data = metadata[patent_number] result = f"Patent Number: {patent_number}\n" text = patent_data.get('text', 'No text available') result += f"Text: {text[:200]}...\n" result += f"Similarity Score: {distances[0][i]:.4f}\n\n" results.append(result) return "\n".join(results[:top_k]) # Create Gradio interface iface = gr.Interface( fn=search, inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."), outputs=gr.Textbox(lines=10, label="Search Results"), title="Patent Similarity Search", description="Enter a query to find similar patents based on their embeddings." ) if __name__ == "__main__": iface.launch()