Spaces:
Sleeping
Sleeping
File size: 15,954 Bytes
6b67b82 b402f97 1b4a9c9 eb15969 6b67b82 e02dc08 6b67b82 b402f97 eb15969 1b4a9c9 f9baad9 eb15969 b402f97 f9baad9 b402f97 3316ef5 b402f97 f9baad9 6b67b82 b402f97 f9baad9 b402f97 f9baad9 6b67b82 f9baad9 fff9411 f9baad9 b402f97 1b4a9c9 b402f97 6b67b82 b402f97 6b67b82 f9baad9 ae3712d f9baad9 ae3712d f9baad9 ae3712d f9baad9 ae3712d f9baad9 ae3712d f9baad9 ae3712d f9baad9 6b67b82 b402f97 6b67b82 f9baad9 eb15969 f9baad9 eb15969 6b67b82 f9baad9 b402f97 f9baad9 6b67b82 f9baad9 ae3712d f9baad9 6b67b82 f9baad9 6b67b82 b402f97 f9baad9 ae3712d f9baad9 ae3712d f9baad9 ae3712d f9baad9 eb15969 f9baad9 ae3712d f9baad9 b402f97 f9baad9 b402f97 ae3712d f9baad9 eb15969 50dcc63 f9baad9 eb15969 f9baad9 4021af8 f9baad9 b402f97 f9baad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import os
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
AutoModelForSequenceClassification,
)
from optimum.onnxruntime import ORTModelForSeq2SeqLM, ORTModelForSequenceClassification
from sentence_transformers import SentenceTransformer
# Define the FastAPI app
app = FastAPI(docs_url="/")
# Add the CORS middleware to the app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define the Google Books API key
key = os.environ.get("GOOGLE_BOOKS_API_KEY")
# Define summarization models
summary_tokenizer_normal = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
summary_model_normal = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
summary_tokenizer_onnx = AutoTokenizer.from_pretrained("optimum/t5-small")
summary_model_onnx = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
# Define classification models
classification_tokenizer_normal = AutoTokenizer.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
classification_model_normal = AutoModelForSequenceClassification.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
classification_tokenizer_onnx = AutoTokenizer.from_pretrained(
"optimum/distilbert-base-uncased-mnli"
)
classification_model_onnx = ORTModelForSequenceClassification.from_pretrained(
"optimum/distilbert-base-uncased-mnli"
)
# Define similarity model
similarity_model = SentenceTransformer("all-MiniLM-L6-v2")
@app.get("/search")
async def search(
query: str,
add_chatgpt_results: bool = False,
n_results: int = 10,
):
"""
Get the results from the Google Books API, OpenAlex, and optionally OpenAI.
"""
import time
import requests
start_time = time.time()
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
def gbooks_search(query, n_results=30):
"""
Access the Google Books API and return the results.
"""
# Set the API endpoint and query parameters
url = "https://www.googleapis.com/books/v1/volumes"
params = {
"q": str(query),
"printType": "books",
"maxResults": n_results,
"key": key,
}
# Send a GET request to the API with the specified parameters
response = requests.get(url, params=params)
# Parse the response JSON and append the results
data = response.json()
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
for item in data["items"]:
volume_info = item["volumeInfo"]
try:
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
except KeyError:
titles.append(volume_info["title"])
try:
descriptions.append(volume_info["description"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(volume_info["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(volume_info["authors"][0])
except KeyError:
authors.append("Null")
try:
images.append(volume_info["imageLinks"]["thumbnail"])
except KeyError:
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the gbooks_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = gbooks_search(query, n_results=n_results)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Get the time since the start
first_checkpoint = time.time()
first_checkpoint_time = int(first_checkpoint - start_time)
def openalex_search(query, n_results=10):
"""
Run a search on OpenAlex and return the results.
"""
import pyalex
from pyalex import Works
# Add email to the config
pyalex.config.email = "[email protected]"
# Define a pager object with the same query
pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)
# Generate a list of the results
openalex_results = list(pager)
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
# Get the titles, descriptions, and publishers and append them to the lists
try:
for result in openalex_results[0]:
try:
titles.append(result["title"])
except KeyError:
titles.append("Null")
try:
descriptions.append(result["abstract"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(result["host_venue"]["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(result["authorships"][0]["author"]["display_name"])
except KeyError:
authors.append("Null")
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
except IndexError:
titles.append("Null")
descriptions.append("Null")
publishers.append("Null")
authors.append("Null")
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the openalex_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openalex_search(query, n_results=n_results)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Calculate the elapsed time between the first and second checkpoints
second_checkpoint = time.time()
second_checkpoint_time = int(second_checkpoint - first_checkpoint)
def openai_search(query, n_results=10):
"""
Create a query to the OpenAI ChatGPT API and return the results.
"""
import openai
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
# Set the OpenAI API key
openai.api_key = os.environ.get("OPENAI_API_KEY")
# Create ChatGPT query
chatgpt_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "You are a librarian. You are helping a patron find a book.",
},
{
"role": "user",
"content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
},
],
)
# Split the response into a list of results
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
"\n"
)[2::2]
# Define a function to parse the results
def parse_result(
result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
):
# Create a dict to store the key-value pairs
parsed_result = {}
for key in ordered_keys:
# Split the result string by the key and append the value to the list
if key != ordered_keys[-1]:
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
else:
parsed_result[key] = result.split(f"{key}: ")[1]
return parsed_result
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
for result in chatgpt_results:
try:
# Parse the result
parsed_result = parse_result(result, ordered_keys=ordered_keys)
# Append the parsed result to the lists
titles.append(parsed_result["Title"])
authors.append(parsed_result["Author"])
publishers.append(parsed_result["Publisher"])
descriptions.append(parsed_result["Summary"])
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
# In case the OpenAI API hits the limit
except IndexError:
break
return titles, authors, publishers, descriptions, images
if add_chatgpt_results:
# Run the openai_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openai_search(query)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Calculate the elapsed time between the second and third checkpoints
third_checkpoint = time.time()
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
results = [
{
"id": i,
"title": title,
"author": author,
"publisher": publisher,
"description": description,
"image_link": image,
}
for (i, [title, author, publisher, description, image]) in enumerate(
zip(titles, authors, publishers, descriptions, images)
)
]
return results
@app.post("/classify")
async def classify(data: list, runtime: str = "normal"):
"""
Create classifier pipeline and return the results.
"""
titles = [book["title"] for book in data]
descriptions = [book["description"] for book in data]
publishers = [book["publisher"] for book in data]
# Combine title, description, and publisher into a single string
combined_data = [
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
for title, description, publisher in zip(titles, descriptions, publishers)
]
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline,
)
from optimum.onnxruntime import ORTModelForSequenceClassification
if runtime == "normal":
# Define the zero-shot classifier
tokenizer = classification_tokenizer_normal
model = classification_model_normal
elif runtime == "onnxruntime":
tokenizer = classification_tokenizer_onnx
model = classification_model_onnx
classifier_pipe = pipeline(
"zero-shot-classification",
model=model,
tokenizer=tokenizer,
hypothesis_template="This book is {}.",
batch_size=1,
device=-1,
multi_label=False,
)
# Define the candidate labels
level = [
"Introductory",
"Advanced",
]
audience = ["Academic", "Not Academic", "Manual"]
classes = [
{
"audience": classifier_pipe(doc, audience)["labels"][0],
"audience_confidence": classifier_pipe(doc, audience)["scores"][0],
"level": classifier_pipe(doc, level)["labels"][0],
"level_confidence": classifier_pipe(doc, level)["scores"][0],
}
for doc in combined_data
]
return classes
@app.post("/find_similar")
async def find_similar(data: list, top_k: int = 5):
"""
Calculate the similarity between the selected book and the corpus. Return the top_k results.
"""
from sentence_transformers import SentenceTransformer
from sentence_transformers import util
titles = [book["title"] for book in data]
descriptions = [book["description"] for book in data]
publishers = [book["publisher"] for book in data]
# Combine title, description, and publisher into a single string
combined_data = [
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
for title, description, publisher in zip(titles, descriptions, publishers)
]
sentence_transformer = similarity_model
book_embeddings = sentence_transformer.encode(combined_data, convert_to_tensor=True)
# Make sure that the top_k value is not greater than the number of books
top_k = len(combined_data) if top_k > len(combined_data) else top_k
similar_books = []
for i in range(len(combined_data)):
# Get the embedding for the ith book
current_embedding = book_embeddings[i]
# Calculate the similarity between the ith book and the rest of the books
similarity_sorted = util.semantic_search(
current_embedding, book_embeddings, top_k=top_k
)
# Append the results to the list
similar_books.append(
{
"sorted_by_similarity": similarity_sorted[0][1:],
}
)
return similar_books
@app.post("/summarize")
async def summarize(descriptions: list, runtime="normal"):
"""
Summarize the descriptions and return the results.
"""
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline,
)
from optimum.onnxruntime import ORTModelForSeq2SeqLM
from optimum.bettertransformer import BetterTransformer
# Define the summarizer model and tokenizer
if runtime == "normal":
tokenizer = summary_tokenizer_normal
normal_model = summary_model_normal
model = BetterTransformer.transform(normal_model)
elif runtime == "onnxruntime":
tokenizer = summary_tokenizer_onnx
model = summary_model_onnx
# Create the summarizer pipeline
summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
# Summarize the descriptions
summaries = [
summarizer_pipe(description)
if (description != "Null" and description != None)
else [{"summary_text": "No summary text is available."}]
for description in descriptions
]
return summaries
|