File size: 15,954 Bytes
6b67b82
b402f97
1b4a9c9
eb15969
 
 
 
 
 
 
6b67b82
 
e02dc08
6b67b82
b402f97
 
 
 
 
 
 
 
 
eb15969
1b4a9c9
f9baad9
eb15969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b402f97
 
f9baad9
b402f97
3316ef5
b402f97
 
f9baad9
 
 
6b67b82
 
 
 
 
 
 
 
 
 
 
 
b402f97
 
 
 
 
 
f9baad9
 
 
 
 
 
b402f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9baad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
f9baad9
 
 
 
 
 
 
 
fff9411
 
 
 
f9baad9
b402f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4a9c9
b402f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
b402f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b67b82
f9baad9
 
ae3712d
f9baad9
 
 
 
ae3712d
f9baad9
ae3712d
 
f9baad9
 
 
ae3712d
f9baad9
 
 
ae3712d
f9baad9
 
 
ae3712d
 
 
f9baad9
6b67b82
 
b402f97
6b67b82
 
 
f9baad9
 
 
 
 
 
 
 
 
eb15969
 
f9baad9
eb15969
 
6b67b82
f9baad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b402f97
f9baad9
6b67b82
f9baad9
 
 
ae3712d
 
 
f9baad9
 
 
6b67b82
f9baad9
6b67b82
b402f97
f9baad9
ae3712d
f9baad9
ae3712d
f9baad9
 
 
 
ae3712d
 
 
f9baad9
 
 
 
 
 
 
eb15969
f9baad9
 
 
 
 
 
ae3712d
f9baad9
 
 
 
 
 
 
b402f97
f9baad9
 
 
 
 
 
b402f97
 
ae3712d
f9baad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb15969
50dcc63
 
f9baad9
eb15969
 
f9baad9
 
 
 
 
 
 
4021af8
f9baad9
 
 
b402f97
f9baad9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import os
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    AutoModelForSequenceClassification,
)
from optimum.onnxruntime import ORTModelForSeq2SeqLM, ORTModelForSequenceClassification
from sentence_transformers import SentenceTransformer

# Define the FastAPI app
app = FastAPI(docs_url="/")

# Add the CORS middleware to the app
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Define the Google Books API key
key = os.environ.get("GOOGLE_BOOKS_API_KEY")

# Define summarization models
summary_tokenizer_normal = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
summary_model_normal = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
summary_tokenizer_onnx = AutoTokenizer.from_pretrained("optimum/t5-small")
summary_model_onnx = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")

# Define classification models
classification_tokenizer_normal = AutoTokenizer.from_pretrained(
    "sileod/deberta-v3-base-tasksource-nli"
)
classification_model_normal = AutoModelForSequenceClassification.from_pretrained(
    "sileod/deberta-v3-base-tasksource-nli"
)
classification_tokenizer_onnx = AutoTokenizer.from_pretrained(
    "optimum/distilbert-base-uncased-mnli"
)
classification_model_onnx = ORTModelForSequenceClassification.from_pretrained(
    "optimum/distilbert-base-uncased-mnli"
)

# Define similarity model
similarity_model = SentenceTransformer("all-MiniLM-L6-v2")


@app.get("/search")
async def search(
    query: str,
    add_chatgpt_results: bool = False,
    n_results: int = 10,
):
    """
    Get the results from the Google Books API, OpenAlex, and optionally OpenAI.
    """
    import time
    import requests

    start_time = time.time()

    # Initialize the lists to store the results
    titles = []
    authors = []
    publishers = []
    descriptions = []
    images = []

    def gbooks_search(query, n_results=30):
        """
        Access the Google Books API and return the results.
        """
        # Set the API endpoint and query parameters
        url = "https://www.googleapis.com/books/v1/volumes"
        params = {
            "q": str(query),
            "printType": "books",
            "maxResults": n_results,
            "key": key,
        }

        # Send a GET request to the API with the specified parameters
        response = requests.get(url, params=params)

        # Parse the response JSON and append the results
        data = response.json()

        # Initialize the lists to store the results
        titles = []
        authors = []
        publishers = []
        descriptions = []
        images = []

        for item in data["items"]:
            volume_info = item["volumeInfo"]
            try:
                titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
            except KeyError:
                titles.append(volume_info["title"])

            try:
                descriptions.append(volume_info["description"])
            except KeyError:
                descriptions.append("Null")

            try:
                publishers.append(volume_info["publisher"])
            except KeyError:
                publishers.append("Null")

            try:
                authors.append(volume_info["authors"][0])
            except KeyError:
                authors.append("Null")

            try:
                images.append(volume_info["imageLinks"]["thumbnail"])
            except KeyError:
                images.append(
                    "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
                )

        return titles, authors, publishers, descriptions, images

    # Run the gbooks_search function
    (
        titles_placeholder,
        authors_placeholder,
        publishers_placeholder,
        descriptions_placeholder,
        images_placeholder,
    ) = gbooks_search(query, n_results=n_results)

    # Append the results to the lists
    [titles.append(title) for title in titles_placeholder]
    [authors.append(author) for author in authors_placeholder]
    [publishers.append(publisher) for publisher in publishers_placeholder]
    [descriptions.append(description) for description in descriptions_placeholder]
    [images.append(image) for image in images_placeholder]

    # Get the time since the start
    first_checkpoint = time.time()
    first_checkpoint_time = int(first_checkpoint - start_time)

    def openalex_search(query, n_results=10):
        """
        Run a search on OpenAlex and return the results.
        """
        import pyalex
        from pyalex import Works

        # Add email to the config
        pyalex.config.email = "[email protected]"

        # Define a pager object with the same query
        pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)

        # Generate a list of the results
        openalex_results = list(pager)

        # Initialize the lists to store the results
        titles = []
        authors = []
        publishers = []
        descriptions = []
        images = []

        # Get the titles, descriptions, and publishers and append them to the lists
        try:
            for result in openalex_results[0]:
                try:
                    titles.append(result["title"])
                except KeyError:
                    titles.append("Null")

                try:
                    descriptions.append(result["abstract"])
                except KeyError:
                    descriptions.append("Null")

                try:
                    publishers.append(result["host_venue"]["publisher"])
                except KeyError:
                    publishers.append("Null")

                try:
                    authors.append(result["authorships"][0]["author"]["display_name"])
                except KeyError:
                    authors.append("Null")

                images.append(
                    "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
                )
        except IndexError:
            titles.append("Null")
            descriptions.append("Null")
            publishers.append("Null")
            authors.append("Null")
            images.append(
                "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
            )

        return titles, authors, publishers, descriptions, images

    # Run the openalex_search function
    (
        titles_placeholder,
        authors_placeholder,
        publishers_placeholder,
        descriptions_placeholder,
        images_placeholder,
    ) = openalex_search(query, n_results=n_results)

    # Append the results to the lists
    [titles.append(title) for title in titles_placeholder]
    [authors.append(author) for author in authors_placeholder]
    [publishers.append(publisher) for publisher in publishers_placeholder]
    [descriptions.append(description) for description in descriptions_placeholder]
    [images.append(image) for image in images_placeholder]

    # Calculate the elapsed time between the first and second checkpoints
    second_checkpoint = time.time()
    second_checkpoint_time = int(second_checkpoint - first_checkpoint)

    def openai_search(query, n_results=10):
        """
        Create a query to the OpenAI ChatGPT API and return the results.
        """
        import openai

        # Initialize the lists to store the results
        titles = []
        authors = []
        publishers = []
        descriptions = []
        images = []

        # Set the OpenAI API key
        openai.api_key = os.environ.get("OPENAI_API_KEY")

        # Create ChatGPT query
        chatgpt_response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {
                    "role": "system",
                    "content": "You are a librarian. You are helping a patron find a book.",
                },
                {
                    "role": "user",
                    "content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
                },
            ],
        )

        # Split the response into a list of results
        chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
            "\n"
        )[2::2]

        # Define a function to parse the results
        def parse_result(
            result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
        ):
            # Create a dict to store the key-value pairs
            parsed_result = {}

            for key in ordered_keys:
                # Split the result string by the key and append the value to the list
                if key != ordered_keys[-1]:
                    parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
                else:
                    parsed_result[key] = result.split(f"{key}: ")[1]

            return parsed_result

        ordered_keys = ["Title", "Author", "Publisher", "Summary"]

        for result in chatgpt_results:
            try:
                # Parse the result
                parsed_result = parse_result(result, ordered_keys=ordered_keys)

                # Append the parsed result to the lists
                titles.append(parsed_result["Title"])
                authors.append(parsed_result["Author"])
                publishers.append(parsed_result["Publisher"])
                descriptions.append(parsed_result["Summary"])
                images.append(
                    "https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
                )

            # In case the OpenAI API hits the limit
            except IndexError:
                break

        return titles, authors, publishers, descriptions, images

    if add_chatgpt_results:
        # Run the openai_search function
        (
            titles_placeholder,
            authors_placeholder,
            publishers_placeholder,
            descriptions_placeholder,
            images_placeholder,
        ) = openai_search(query)

        # Append the results to the lists
        [titles.append(title) for title in titles_placeholder]
        [authors.append(author) for author in authors_placeholder]
        [publishers.append(publisher) for publisher in publishers_placeholder]
        [descriptions.append(description) for description in descriptions_placeholder]
        [images.append(image) for image in images_placeholder]

    # Calculate the elapsed time between the second and third checkpoints
    third_checkpoint = time.time()
    third_checkpoint_time = int(third_checkpoint - second_checkpoint)

    results = [
        {
            "id": i,
            "title": title,
            "author": author,
            "publisher": publisher,
            "description": description,
            "image_link": image,
        }
        for (i, [title, author, publisher, description, image]) in enumerate(
            zip(titles, authors, publishers, descriptions, images)
        )
    ]

    return results


@app.post("/classify")
async def classify(data: list, runtime: str = "normal"):
    """
    Create classifier pipeline and return the results.
    """
    titles = [book["title"] for book in data]
    descriptions = [book["description"] for book in data]
    publishers = [book["publisher"] for book in data]

    # Combine title, description, and publisher into a single string
    combined_data = [
        f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
        for title, description, publisher in zip(titles, descriptions, publishers)
    ]

    from transformers import (
        AutoTokenizer,
        AutoModelForSequenceClassification,
        pipeline,
    )
    from optimum.onnxruntime import ORTModelForSequenceClassification

    if runtime == "normal":
        # Define the zero-shot classifier
        tokenizer = classification_tokenizer_normal
        model = classification_model_normal
    elif runtime == "onnxruntime":
        tokenizer = classification_tokenizer_onnx
        model = classification_model_onnx

    classifier_pipe = pipeline(
        "zero-shot-classification",
        model=model,
        tokenizer=tokenizer,
        hypothesis_template="This book is {}.",
        batch_size=1,
        device=-1,
        multi_label=False,
    )

    # Define the candidate labels
    level = [
        "Introductory",
        "Advanced",
    ]

    audience = ["Academic", "Not Academic", "Manual"]

    classes = [
        {
            "audience": classifier_pipe(doc, audience)["labels"][0],
            "audience_confidence": classifier_pipe(doc, audience)["scores"][0],
            "level": classifier_pipe(doc, level)["labels"][0],
            "level_confidence": classifier_pipe(doc, level)["scores"][0],
        }
        for doc in combined_data
    ]

    return classes


@app.post("/find_similar")
async def find_similar(data: list, top_k: int = 5):
    """
    Calculate the similarity between the selected book and the corpus. Return the top_k results.
    """
    from sentence_transformers import SentenceTransformer
    from sentence_transformers import util

    titles = [book["title"] for book in data]
    descriptions = [book["description"] for book in data]
    publishers = [book["publisher"] for book in data]

    # Combine title, description, and publisher into a single string
    combined_data = [
        f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
        for title, description, publisher in zip(titles, descriptions, publishers)
    ]

    sentence_transformer = similarity_model
    book_embeddings = sentence_transformer.encode(combined_data, convert_to_tensor=True)

    # Make sure that the top_k value is not greater than the number of books
    top_k = len(combined_data) if top_k > len(combined_data) else top_k

    similar_books = []

    for i in range(len(combined_data)):
        # Get the embedding for the ith book
        current_embedding = book_embeddings[i]

        # Calculate the similarity between the ith book and the rest of the books
        similarity_sorted = util.semantic_search(
            current_embedding, book_embeddings, top_k=top_k
        )

        # Append the results to the list
        similar_books.append(
            {
                "sorted_by_similarity": similarity_sorted[0][1:],
            }
        )

    return similar_books


@app.post("/summarize")
async def summarize(descriptions: list, runtime="normal"):
    """
    Summarize the descriptions and return the results.
    """
    from transformers import (
        AutoTokenizer,
        AutoModelForSeq2SeqLM,
        pipeline,
    )
    from optimum.onnxruntime import ORTModelForSeq2SeqLM
    from optimum.bettertransformer import BetterTransformer

    # Define the summarizer model and tokenizer
    if runtime == "normal":
        tokenizer = summary_tokenizer_normal
        normal_model = summary_model_normal
        model = BetterTransformer.transform(normal_model)
    elif runtime == "onnxruntime":
        tokenizer = summary_tokenizer_onnx
        model = summary_model_onnx

    # Create the summarizer pipeline
    summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)

    # Summarize the descriptions
    summaries = [
        summarizer_pipe(description)
        if (description != "Null" and description != None)
        else [{"summary_text": "No summary text is available."}]
        for description in descriptions
    ]

    return summaries