Spaces:
Sleeping
Sleeping
bertugmirasyedi
commited on
Commit
·
b402f97
1
Parent(s):
94b6bc9
Complete overhaul
Browse files
app.py
CHANGED
@@ -1,22 +1,33 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
|
3 |
# Define the FastAPI app
|
4 |
app = FastAPI(docs_url="/")
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import time
|
9 |
import requests
|
10 |
|
11 |
start_time = time.time()
|
12 |
|
13 |
-
# Set the API endpoint and query parameters
|
14 |
-
url = "https://www.googleapis.com/books/v1/volumes"
|
15 |
-
params = {"q": str(query), "printType": "books", "maxResults": 1}
|
16 |
-
|
17 |
-
# Send a GET request to the API with the specified parameters
|
18 |
-
response = requests.get(url, params=params)
|
19 |
-
|
20 |
# Initialize the lists to store the results
|
21 |
titles = []
|
22 |
authors = []
|
@@ -24,230 +35,255 @@ def search(query, similarity=False):
|
|
24 |
descriptions = []
|
25 |
images = []
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
# Define a pager object with the same query
|
67 |
-
pager = Works().search(str(query)).paginate(per_page=1, n_max=1)
|
68 |
-
|
69 |
-
# Generate a list of the results
|
70 |
-
openalex_results = list(pager)
|
71 |
-
|
72 |
-
# Get the titles, descriptions, and publishers and append them to the lists
|
73 |
-
for result in openalex_results[0]:
|
74 |
-
try:
|
75 |
-
titles.append(result["title"])
|
76 |
-
except KeyError:
|
77 |
-
titles.append("Null")
|
78 |
-
|
79 |
-
try:
|
80 |
-
descriptions.append(result["abstract"])
|
81 |
-
except KeyError:
|
82 |
-
descriptions.append("Null")
|
83 |
-
|
84 |
-
try:
|
85 |
-
publishers.append(result["host_venue"]["publisher"])
|
86 |
-
except KeyError:
|
87 |
-
publishers.append("Null")
|
88 |
-
|
89 |
-
try:
|
90 |
-
authors.append(result["authorships"][0]["author"]["display_name"])
|
91 |
-
except KeyError:
|
92 |
-
authors.append("Null")
|
93 |
-
|
94 |
-
images.append(
|
95 |
-
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
96 |
-
)
|
97 |
-
|
98 |
-
### OpenAI ###
|
99 |
-
import openai
|
100 |
-
|
101 |
-
# Set the OpenAI API key
|
102 |
-
openai.api_key = "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"
|
103 |
-
|
104 |
-
# Create ChatGPT query
|
105 |
-
chatgpt_response = openai.ChatCompletion.create(
|
106 |
-
model="gpt-3.5-turbo",
|
107 |
-
messages=[
|
108 |
-
{
|
109 |
-
"role": "system",
|
110 |
-
"content": "You are a librarian. You are helping a patron find a book.",
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"role": "user",
|
114 |
-
"content": f"Recommend me 1 books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
|
115 |
-
},
|
116 |
-
],
|
117 |
-
)
|
118 |
-
|
119 |
-
# Split the response into a list of results
|
120 |
-
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split("\n")[
|
121 |
-
2::2
|
122 |
-
]
|
123 |
-
|
124 |
-
# Define a function to parse the results
|
125 |
-
def parse_result(result, ordered_keys=["Title", "Author", "Publisher", "Summary"]):
|
126 |
-
# Create a dict to store the key-value pairs
|
127 |
-
parsed_result = {}
|
128 |
-
|
129 |
-
for key in ordered_keys:
|
130 |
-
# Split the result string by the key and append the value to the list
|
131 |
-
if key != ordered_keys[-1]:
|
132 |
-
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
|
133 |
-
else:
|
134 |
-
parsed_result[key] = result.split(f"{key}: ")[1]
|
135 |
-
|
136 |
-
return parsed_result
|
137 |
-
|
138 |
-
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
|
139 |
-
|
140 |
-
for result in chatgpt_results:
|
141 |
-
try:
|
142 |
-
# Parse the result
|
143 |
-
parsed_result = parse_result(result, ordered_keys=ordered_keys)
|
144 |
-
|
145 |
-
# Append the parsed result to the lists
|
146 |
-
titles.append(parsed_result["Title"])
|
147 |
-
authors.append(parsed_result["Author"])
|
148 |
-
publishers.append(parsed_result["Publisher"])
|
149 |
-
descriptions.append(parsed_result["Summary"])
|
150 |
images.append(
|
151 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
152 |
)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
# Combine title, description, and publisher into a single string
|
177 |
combined_data = [
|
178 |
-
f"{title} {
|
179 |
for title, description, publisher in zip(titles, descriptions, publishers)
|
180 |
]
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Classify the sentences
|
188 |
-
# classifier.predict(sentences)
|
189 |
-
|
190 |
-
# Get the predicted labels
|
191 |
-
# classes = [sentence.labels for sentence in sentences]
|
192 |
-
|
193 |
-
# Define the summarizer model and tokenizer
|
194 |
-
sum_tokenizer = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
|
195 |
-
|
196 |
-
# sum_model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-xsum-12-6")
|
197 |
-
sum_model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
|
198 |
-
|
199 |
-
summarizer_pipeline = pipeline(
|
200 |
-
"summarization",
|
201 |
-
model=sum_model,
|
202 |
-
tokenizer=sum_tokenizer,
|
203 |
-
batch_size=64,
|
204 |
-
)
|
205 |
-
|
206 |
-
# Define the zero-shot classifier
|
207 |
-
zs_tokenizer = AutoTokenizer.from_pretrained(
|
208 |
-
"sileod/deberta-v3-base-tasksource-nli"
|
209 |
-
)
|
210 |
-
# Quickfix for the tokenizer
|
211 |
-
# zs_tokenizer.model_input_names = ["input_ids", "attention_mask"]
|
212 |
-
|
213 |
-
zs_model = AutoModelForSequenceClassification.from_pretrained(
|
214 |
-
"sileod/deberta-v3-base-tasksource-nli"
|
215 |
-
)
|
216 |
-
zs_classifier = pipeline(
|
217 |
-
"zero-shot-classification",
|
218 |
-
model=zs_model,
|
219 |
-
tokenizer=zs_tokenizer,
|
220 |
-
batch_size=64,
|
221 |
-
hypothesis_template="This book is {}.",
|
222 |
-
multi_label=True,
|
223 |
-
)
|
224 |
-
|
225 |
-
# Summarize the descriptions
|
226 |
-
summaries = [
|
227 |
-
summarizer_pipeline(description[0:1024])
|
228 |
-
if (description != None)
|
229 |
-
else [{"summary_text": "Null"}]
|
230 |
-
for description in descriptions
|
231 |
-
]
|
232 |
-
|
233 |
-
# Predict the level of the book
|
234 |
-
candidate_labels = [
|
235 |
-
"Introductory",
|
236 |
-
"Advanced",
|
237 |
-
"Academic",
|
238 |
-
"Not Academic",
|
239 |
-
"Manual",
|
240 |
-
]
|
241 |
-
|
242 |
-
# Get the predicted labels
|
243 |
-
classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]
|
244 |
-
|
245 |
-
# Calculate the elapsed time
|
246 |
-
end_time = time.time()
|
247 |
-
runtime = f"{end_time - start_time:.2f} seconds"
|
248 |
-
|
249 |
-
# Calculate the similarity between the books
|
250 |
-
if similarity:
|
251 |
from sentence_transformers import util
|
252 |
|
253 |
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
@@ -255,36 +291,194 @@ def search(query, similarity=False):
|
|
255 |
combined_data, convert_to_tensor=True
|
256 |
)
|
257 |
|
|
|
|
|
|
|
258 |
similar_books = []
|
259 |
-
for i in range(len(
|
|
|
260 |
current_embedding = book_embeddings[i]
|
261 |
|
|
|
262 |
similarity_sorted = util.semantic_search(
|
263 |
-
current_embedding, book_embeddings, top_k=
|
264 |
)
|
265 |
|
|
|
266 |
similar_books.append(
|
267 |
{
|
268 |
"sorted_by_similarity": similarity_sorted[0][1:],
|
269 |
}
|
270 |
)
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
)
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
return results
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
|
4 |
# Define the FastAPI app
|
5 |
app = FastAPI(docs_url="/")
|
6 |
|
7 |
+
# Add the CORS middleware to the app
|
8 |
+
app.add_middleware(
|
9 |
+
CORSMiddleware,
|
10 |
+
allow_origins=["*"],
|
11 |
+
allow_credentials=True,
|
12 |
+
allow_methods=["*"],
|
13 |
+
allow_headers=["*"],
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
@app.get("/search")
|
18 |
+
def search(
|
19 |
+
query: str,
|
20 |
+
classification: bool = True,
|
21 |
+
summarization: bool = True,
|
22 |
+
similarity: bool = False,
|
23 |
+
add_chatgpt_results: bool = True,
|
24 |
+
n_results: int = 10,
|
25 |
+
):
|
26 |
import time
|
27 |
import requests
|
28 |
|
29 |
start_time = time.time()
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Initialize the lists to store the results
|
32 |
titles = []
|
33 |
authors = []
|
|
|
35 |
descriptions = []
|
36 |
images = []
|
37 |
|
38 |
+
def gbooks_search(query, n_results=30):
|
39 |
+
"""
|
40 |
+
Access the Google Books API and return the results.
|
41 |
+
"""
|
42 |
+
# Set the API endpoint and query parameters
|
43 |
+
url = "https://www.googleapis.com/books/v1/volumes"
|
44 |
+
params = {"q": str(query), "printType": "books", "maxResults": n_results}
|
45 |
+
|
46 |
+
# Send a GET request to the API with the specified parameters
|
47 |
+
response = requests.get(url, params=params)
|
48 |
+
|
49 |
+
# Parse the response JSON and append the results
|
50 |
+
data = response.json()
|
51 |
+
|
52 |
+
# Initialize the lists to store the results
|
53 |
+
titles = []
|
54 |
+
authors = []
|
55 |
+
publishers = []
|
56 |
+
descriptions = []
|
57 |
+
images = []
|
58 |
+
|
59 |
+
for item in data["items"]:
|
60 |
+
volume_info = item["volumeInfo"]
|
61 |
+
try:
|
62 |
+
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
|
63 |
+
except KeyError:
|
64 |
+
titles.append(volume_info["title"])
|
65 |
+
|
66 |
+
try:
|
67 |
+
descriptions.append(volume_info["description"])
|
68 |
+
except KeyError:
|
69 |
+
descriptions.append("Null")
|
70 |
+
|
71 |
+
try:
|
72 |
+
publishers.append(volume_info["publisher"])
|
73 |
+
except KeyError:
|
74 |
+
publishers.append("Null")
|
75 |
+
|
76 |
+
try:
|
77 |
+
authors.append(volume_info["authors"][0])
|
78 |
+
except KeyError:
|
79 |
+
authors.append("Null")
|
80 |
+
|
81 |
+
try:
|
82 |
+
images.append(volume_info["imageLinks"]["thumbnail"])
|
83 |
+
except KeyError:
|
84 |
+
images.append(
|
85 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
86 |
+
)
|
87 |
+
|
88 |
+
return titles, authors, publishers, descriptions, images
|
89 |
+
|
90 |
+
# Run the gbooks_search function
|
91 |
+
(
|
92 |
+
titles_placeholder,
|
93 |
+
authors_placeholder,
|
94 |
+
publishers_placeholder,
|
95 |
+
descriptions_placeholder,
|
96 |
+
images_placeholder,
|
97 |
+
) = gbooks_search(query, n_results=n_results)
|
98 |
+
|
99 |
+
# Append the results to the lists
|
100 |
+
[titles.append(title) for title in titles_placeholder]
|
101 |
+
[authors.append(author) for author in authors_placeholder]
|
102 |
+
[publishers.append(publisher) for publisher in publishers_placeholder]
|
103 |
+
[descriptions.append(description) for description in descriptions_placeholder]
|
104 |
+
[images.append(image) for image in images_placeholder]
|
105 |
+
|
106 |
+
# Get the time since the start
|
107 |
+
first_checkpoint = time.time()
|
108 |
+
first_checkpoint_time = int(first_checkpoint - start_time)
|
109 |
+
|
110 |
+
def openalex_search(query, n_results=10):
|
111 |
+
"""
|
112 |
+
Run a search on OpenAlex and return the results.
|
113 |
+
"""
|
114 |
+
import pyalex
|
115 |
+
from pyalex import Works
|
116 |
+
|
117 |
+
# Add email to the config
|
118 |
+
pyalex.config.email = "[email protected]"
|
119 |
+
|
120 |
+
# Define a pager object with the same query
|
121 |
+
pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)
|
122 |
+
|
123 |
+
# Generate a list of the results
|
124 |
+
openalex_results = list(pager)
|
125 |
+
|
126 |
+
# Initialize the lists to store the results
|
127 |
+
titles = []
|
128 |
+
authors = []
|
129 |
+
publishers = []
|
130 |
+
descriptions = []
|
131 |
+
images = []
|
132 |
+
|
133 |
+
# Get the titles, descriptions, and publishers and append them to the lists
|
134 |
+
for result in openalex_results[0]:
|
135 |
+
try:
|
136 |
+
titles.append(result["title"])
|
137 |
+
except KeyError:
|
138 |
+
titles.append("Null")
|
139 |
+
|
140 |
+
try:
|
141 |
+
descriptions.append(result["abstract"])
|
142 |
+
except KeyError:
|
143 |
+
descriptions.append("Null")
|
144 |
+
|
145 |
+
try:
|
146 |
+
publishers.append(result["host_venue"]["publisher"])
|
147 |
+
except KeyError:
|
148 |
+
publishers.append("Null")
|
149 |
+
|
150 |
+
try:
|
151 |
+
authors.append(result["authorships"][0]["author"]["display_name"])
|
152 |
+
except KeyError:
|
153 |
+
authors.append("Null")
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
images.append(
|
156 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
157 |
)
|
158 |
|
159 |
+
return titles, authors, publishers, descriptions, images
|
160 |
+
|
161 |
+
# Run the openalex_search function
|
162 |
+
(
|
163 |
+
titles_placeholder,
|
164 |
+
authors_placeholder,
|
165 |
+
publishers_placeholder,
|
166 |
+
descriptions_placeholder,
|
167 |
+
images_placeholder,
|
168 |
+
) = openalex_search(query, n_results=n_results)
|
169 |
+
|
170 |
+
# Append the results to the lists
|
171 |
+
[titles.append(title) for title in titles_placeholder]
|
172 |
+
[authors.append(author) for author in authors_placeholder]
|
173 |
+
[publishers.append(publisher) for publisher in publishers_placeholder]
|
174 |
+
[descriptions.append(description) for description in descriptions_placeholder]
|
175 |
+
[images.append(image) for image in images_placeholder]
|
176 |
+
|
177 |
+
# Calculate the elapsed time between the first and second checkpoints
|
178 |
+
second_checkpoint = time.time()
|
179 |
+
second_checkpoint_time = int(second_checkpoint - first_checkpoint)
|
180 |
+
|
181 |
+
def openai_search(query, n_results=10):
|
182 |
+
"""
|
183 |
+
Create a query to the OpenAI ChatGPT API and return the results.
|
184 |
+
"""
|
185 |
+
import openai
|
186 |
+
|
187 |
+
# Initialize the lists to store the results
|
188 |
+
titles = []
|
189 |
+
authors = []
|
190 |
+
publishers = []
|
191 |
+
descriptions = []
|
192 |
+
images = []
|
193 |
+
|
194 |
+
# Set the OpenAI API key
|
195 |
+
openai.api_key = "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"
|
196 |
+
|
197 |
+
# Create ChatGPT query
|
198 |
+
chatgpt_response = openai.ChatCompletion.create(
|
199 |
+
model="gpt-3.5-turbo",
|
200 |
+
messages=[
|
201 |
+
{
|
202 |
+
"role": "system",
|
203 |
+
"content": "You are a librarian. You are helping a patron find a book.",
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"role": "user",
|
207 |
+
"content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
|
208 |
+
},
|
209 |
+
],
|
210 |
+
)
|
211 |
|
212 |
+
# Split the response into a list of results
|
213 |
+
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
|
214 |
+
"\n"
|
215 |
+
)[2::2]
|
216 |
+
|
217 |
+
# Define a function to parse the results
|
218 |
+
def parse_result(
|
219 |
+
result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
|
220 |
+
):
|
221 |
+
# Create a dict to store the key-value pairs
|
222 |
+
parsed_result = {}
|
223 |
+
|
224 |
+
for key in ordered_keys:
|
225 |
+
# Split the result string by the key and append the value to the list
|
226 |
+
if key != ordered_keys[-1]:
|
227 |
+
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
|
228 |
+
else:
|
229 |
+
parsed_result[key] = result.split(f"{key}: ")[1]
|
230 |
+
|
231 |
+
return parsed_result
|
232 |
+
|
233 |
+
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
|
234 |
+
|
235 |
+
for result in chatgpt_results:
|
236 |
+
try:
|
237 |
+
# Parse the result
|
238 |
+
parsed_result = parse_result(result, ordered_keys=ordered_keys)
|
239 |
+
|
240 |
+
# Append the parsed result to the lists
|
241 |
+
titles.append(parsed_result["Title"])
|
242 |
+
authors.append(parsed_result["Author"])
|
243 |
+
publishers.append(parsed_result["Publisher"])
|
244 |
+
descriptions.append(parsed_result["Summary"])
|
245 |
+
images.append(
|
246 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
247 |
+
)
|
248 |
+
|
249 |
+
# In case the OpenAI API hits the limit
|
250 |
+
except IndexError:
|
251 |
+
break
|
252 |
+
|
253 |
+
return titles, authors, publishers, descriptions, images
|
254 |
+
|
255 |
+
if add_chatgpt_results:
|
256 |
+
# Run the openai_search function
|
257 |
+
(
|
258 |
+
titles_placeholder,
|
259 |
+
authors_placeholder,
|
260 |
+
publishers_placeholder,
|
261 |
+
descriptions_placeholder,
|
262 |
+
images_placeholder,
|
263 |
+
) = openai_search(query)
|
264 |
+
|
265 |
+
# Append the results to the lists
|
266 |
+
[titles.append(title) for title in titles_placeholder]
|
267 |
+
[authors.append(author) for author in authors_placeholder]
|
268 |
+
[publishers.append(publisher) for publisher in publishers_placeholder]
|
269 |
+
[descriptions.append(description) for description in descriptions_placeholder]
|
270 |
+
[images.append(image) for image in images_placeholder]
|
271 |
+
|
272 |
+
# Calculate the elapsed time between the second and third checkpoints
|
273 |
+
third_checkpoint = time.time()
|
274 |
+
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
|
275 |
|
276 |
# Combine title, description, and publisher into a single string
|
277 |
combined_data = [
|
278 |
+
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
279 |
for title, description, publisher in zip(titles, descriptions, publishers)
|
280 |
]
|
281 |
|
282 |
+
def find_similar(combined_data, top_k=10):
|
283 |
+
"""
|
284 |
+
Calculate the similarity between the books and return the top_k results.
|
285 |
+
"""
|
286 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
from sentence_transformers import util
|
288 |
|
289 |
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
291 |
combined_data, convert_to_tensor=True
|
292 |
)
|
293 |
|
294 |
+
# Make sure that the top_k value is not greater than the number of books
|
295 |
+
top_k = len(combined_data) if top_k > len(combined_data) else top_k
|
296 |
+
|
297 |
similar_books = []
|
298 |
+
for i in range(len(combined_data)):
|
299 |
+
# Get the embedding for the ith book
|
300 |
current_embedding = book_embeddings[i]
|
301 |
|
302 |
+
# Calculate the similarity between the ith book and the rest of the books
|
303 |
similarity_sorted = util.semantic_search(
|
304 |
+
current_embedding, book_embeddings, top_k=top_k
|
305 |
)
|
306 |
|
307 |
+
# Append the results to the list
|
308 |
similar_books.append(
|
309 |
{
|
310 |
"sorted_by_similarity": similarity_sorted[0][1:],
|
311 |
}
|
312 |
)
|
313 |
|
314 |
+
return similar_books
|
315 |
+
|
316 |
+
def summarize(descriptions):
|
317 |
+
"""
|
318 |
+
Summarize the descriptions and return the results.
|
319 |
+
"""
|
320 |
+
from transformers import (
|
321 |
+
AutoTokenizer,
|
322 |
+
AutoModelForSeq2SeqLM,
|
323 |
+
pipeline,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Define the summarizer model and tokenizer
|
327 |
+
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
328 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
329 |
+
|
330 |
+
# Create the summarizer pipeline
|
331 |
+
summarizer_pipe = pipeline(
|
332 |
+
"summarization",
|
333 |
+
model=model,
|
334 |
+
tokenizer=tokenizer,
|
335 |
+
min_length=10,
|
336 |
+
max_length=128,
|
337 |
+
)
|
338 |
+
|
339 |
+
# Summarize the descriptions
|
340 |
+
summaries = [
|
341 |
+
summarizer_pipe(description)
|
342 |
+
if (len(description) > 0)
|
343 |
+
else [{"summary_text": "No summary text is available."}]
|
344 |
+
for description in descriptions
|
345 |
+
]
|
346 |
+
|
347 |
+
return summaries
|
348 |
+
|
349 |
+
def classify(combined_data, parallel=False):
|
350 |
+
"""
|
351 |
+
Create classifier pipeline and return the results.
|
352 |
+
"""
|
353 |
+
from transformers import (
|
354 |
+
AutoTokenizer,
|
355 |
+
AutoModelForSequenceClassification,
|
356 |
+
pipeline,
|
357 |
+
)
|
358 |
+
|
359 |
+
# Define the zero-shot classifier
|
360 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
361 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
362 |
)
|
363 |
|
364 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
365 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
366 |
+
)
|
367 |
+
classifier_pipe = pipeline(
|
368 |
+
"zero-shot-classification",
|
369 |
+
model=model,
|
370 |
+
tokenizer=tokenizer,
|
371 |
+
hypothesis_template="This book is {}.",
|
372 |
+
batch_size=1,
|
373 |
+
device=-1,
|
374 |
+
multi_label=True,
|
375 |
+
)
|
376 |
+
|
377 |
+
# Define the candidate labels
|
378 |
+
candidate_labels = [
|
379 |
+
"Introductory",
|
380 |
+
"Advanced",
|
381 |
+
"Academic",
|
382 |
+
"Not Academic",
|
383 |
+
"Manual",
|
384 |
+
]
|
385 |
+
|
386 |
+
if parallel:
|
387 |
+
import ray
|
388 |
+
import psutil
|
389 |
+
|
390 |
+
# Define the number of cores to use
|
391 |
+
num_cores = psutil.cpu_count(logical=True)
|
392 |
+
|
393 |
+
# Initialize Ray
|
394 |
+
ray.init(num_cpus=num_cores, ignore_reinit_error=True)
|
395 |
+
classifier_id = ray.put(classifier_pipe)
|
396 |
+
|
397 |
+
# Define the function to be parallelized
|
398 |
+
@ray.remote
|
399 |
+
def classify_parallel(classifier_id, doc, candidate_labels):
|
400 |
+
classifier = ray.get(classifier_id)
|
401 |
+
return classifier(doc, candidate_labels)
|
402 |
+
|
403 |
+
# Get the predicted labels
|
404 |
+
classes = [
|
405 |
+
classify_parallel.remote(classifier_id, doc, candidate_labels)
|
406 |
+
for doc in combined_data
|
407 |
+
]
|
408 |
+
else:
|
409 |
+
# Get the predicted labels
|
410 |
+
classes = [classifier_pipe(doc, candidate_labels) for doc in combined_data]
|
411 |
+
|
412 |
+
return classes
|
413 |
+
|
414 |
+
# If true then run the similarity, summarize, and classify functions
|
415 |
+
if classification:
|
416 |
+
classes = classify(combined_data, parallel=False)
|
417 |
+
else:
|
418 |
+
classes = [
|
419 |
+
{"labels": ["No labels available."], "scores": [0]}
|
420 |
+
for i in range(len(combined_data))
|
421 |
+
]
|
422 |
+
|
423 |
+
# Calculate the elapsed time between the third and fourth checkpoints
|
424 |
+
fourth_checkpoint = time.time()
|
425 |
+
classification_time = int(fourth_checkpoint - third_checkpoint)
|
426 |
+
|
427 |
+
if summarization:
|
428 |
+
summaries = summarize(descriptions)
|
429 |
+
else:
|
430 |
+
summaries = [
|
431 |
+
[{"summary_text": description}]
|
432 |
+
if (len(description) > 0)
|
433 |
+
else [{"summary_text": "No summary text is available."}]
|
434 |
+
for description in descriptions
|
435 |
+
]
|
436 |
+
|
437 |
+
# Calculate the elapsed time between the fourth and fifth checkpoints
|
438 |
+
fifth_checkpoint = time.time()
|
439 |
+
summarization_time = int(fifth_checkpoint - fourth_checkpoint)
|
440 |
+
|
441 |
+
if similarity:
|
442 |
+
similar_books = find_similar(combined_data)
|
443 |
+
else:
|
444 |
+
similar_books = [
|
445 |
+
{"sorted_by_similarity": ["No similar books available."]}
|
446 |
+
for i in range(len(combined_data))
|
447 |
+
]
|
448 |
+
|
449 |
+
# Calculate the elapsed time between the fifth and sixth checkpoints
|
450 |
+
sixth_checkpoint = time.time()
|
451 |
+
similarity_time = int(sixth_checkpoint - fifth_checkpoint)
|
452 |
+
|
453 |
+
# Calculate the total elapsed time
|
454 |
+
end_time = time.time()
|
455 |
+
runtime = f"{end_time - start_time:.2f} seconds"
|
456 |
+
|
457 |
+
# Create a list of dictionaries to store the results
|
458 |
+
results = [
|
459 |
+
{
|
460 |
+
"id": i,
|
461 |
+
"title": titles[i],
|
462 |
+
"author": authors[i],
|
463 |
+
"publisher": publishers[i],
|
464 |
+
"image_link": images[i],
|
465 |
+
"labels": classes[i]["labels"][0:2],
|
466 |
+
"label_confidences": classes[i]["scores"][0:2],
|
467 |
+
"summary": summaries[i][0]["summary_text"],
|
468 |
+
"similar_books": similar_books[i]["sorted_by_similarity"],
|
469 |
+
"checkpoints": [
|
470 |
+
{
|
471 |
+
"Google Books Time": first_checkpoint_time,
|
472 |
+
"OpenAlex Time": second_checkpoint_time,
|
473 |
+
"OpenAI Time": third_checkpoint_time,
|
474 |
+
"Classification Time": classification_time,
|
475 |
+
"Summarization Time": summarization_time,
|
476 |
+
"Similarity Computing Time": similarity_time,
|
477 |
+
}
|
478 |
+
],
|
479 |
+
"total_runtime": runtime,
|
480 |
+
}
|
481 |
+
for i in range(len(combined_data))
|
482 |
+
]
|
483 |
+
|
484 |
return results
|