Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderTiny, FluxPipeline | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import sys | |
sys.path.append('.') | |
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV | |
# Model configurations | |
SDXL_CONCEPTS = [ | |
"alien", "ancient ruins", "animal", "bike", "car", "Citadel", | |
"coral", "cowboy", "face", "futuristic cities", "monster", | |
"mystical creature", "planet", "plant", "robot", "sculpture", | |
"spaceship", "statue", "studio", "video game", "wizard" | |
] | |
FLUX_CONCEPTS = [ | |
"alien", | |
"ancient ruins", | |
"animal", | |
"bike", | |
"car", | |
"Citadel", | |
"face", | |
"futuristic cities", | |
"mystical creature", | |
"planet", | |
"plant", | |
"robot", | |
"spaceship", | |
"statue", | |
"studio", | |
"video game", | |
"wizard" | |
] | |
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo_name = "tianweiy/DMD2" | |
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
# Load model. | |
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype) | |
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name))) | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch_dtype).to(device) | |
unet = pipe.unet | |
## Change these parameters based on how you trained your sliderspace sliders | |
train_method = 'xattn-strict' | |
rank = 1 | |
alpha =1 | |
networks = {} | |
modules = DEFAULT_TARGET_REPLACE | |
modules += UNET_TARGET_REPLACE_MODULE_CONV | |
for i in range(1): | |
networks[i] = LoRANetwork( | |
unet, | |
rank=int(rank), | |
multiplier=1.0, | |
alpha=int(alpha), | |
train_method=train_method, | |
fast_init=True, | |
).to(device, dtype=torch_dtype) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
base_model_id = "black-forest-labs/FLUX.1-schnell" | |
max_sequence_length = 256 | |
flux_pipe = FluxPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype) | |
flux_pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype) | |
flux_pipe = flux_pipe.to(device) | |
# pipe.enable_sequential_cpu_offload() | |
transformer = flux_pipe.transformer | |
## Change these parameters based on how you trained your sliderspace sliders | |
train_method = 'flux-attn' | |
rank = 1 | |
alpha =1 | |
flux_networks = {} | |
modules = DEFAULT_TARGET_REPLACE | |
modules += UNET_TARGET_REPLACE_MODULE_CONV | |
for i in range(1): | |
flux_networks[i] = LoRANetwork( | |
transformer, | |
rank=int(rank), | |
multiplier=1.0, | |
alpha=int(alpha), | |
train_method=train_method, | |
fast_init=True, | |
).to(device, dtype=torch_dtype) | |
def update_sliderspace_choices(model_choice): | |
return gr.Dropdown( | |
choices=SDXL_CONCEPTS if model_choice == "SDXL-DMD" else FLUX_CONCEPTS, | |
label="SliderSpace Concept", | |
value=SDXL_CONCEPTS[0] if model_choice == "SDXL-DMD" else FLUX_CONCEPTS[0] | |
) | |
#[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
slider_space, | |
discovered_directions, | |
slider_scale, | |
model_choice, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if model_choice == 'SDXL-DMD': | |
sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt" | |
for net in networks: | |
networks[net].load_state_dict(torch.load(sliderspace_path)) | |
networks[net].set_lora_slider(slider_scale) | |
with networks[0]: | |
pass | |
# original image | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
# edited image | |
generator = torch.Generator().manual_seed(seed) | |
with networks[0]: | |
slider_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
else: | |
sliderspace_path = f"flux_sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt" | |
for net in flux_networks: | |
flux_networks[net].load_state_dict(torch.load(sliderspace_path)) | |
flux_networks[net].set_lora_slider(slider_scale) | |
with flux_networks[0]: | |
pass | |
# original image | |
generator = torch.Generator().manual_seed(seed) | |
image = flux_pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
max_sequence_length = 256, | |
).images[0] | |
# edited image | |
generator = torch.Generator().manual_seed(seed) | |
with flux_networks[0]: | |
slider_image = flux_pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
max_sequence_length = 256, | |
).images[0] | |
return image, slider_image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
ORIGINAL_SPACE_ID = 'baulab/SliderSpace' | |
SPACE_ID = os.getenv('SPACE_ID') | |
SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine. | |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> | |
''' | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models") | |
# Adding links under the title | |
gr.Markdown(""" | |
🔗 [Project Page](https://sliderspace.baulab.info) | | |
💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace) | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
# Add model selection dropdown | |
model_choice = gr.Dropdown( | |
choices=["SDXL-DMD", "FLUX-Schnell"], | |
label="Model", | |
value="SDXL-DMD" | |
) | |
# New dropdowns side by side | |
with gr.Row(): | |
slider_space = gr.Dropdown( | |
choices=SDXL_CONCEPTS, | |
label="SliderSpace Concept", | |
value=SDXL_CONCEPTS[0] | |
) | |
discovered_directions = gr.Dropdown( | |
choices=[f"Slider {i}" for i in range(1, 11)], | |
label="Discovered Directions", | |
value="Slider 1" | |
) | |
slider_scale = gr.Slider( | |
label="Slider Scale", | |
minimum=-4, | |
maximum=4, | |
step=0.1, | |
value=1, | |
) | |
with gr.Row(): | |
result = gr.Image(label="Original Image", show_label=True) | |
slider_result = gr.Image(label="Discovered Edit Direction", show_label=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=0.0, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, # Replace with defaults that work for your model | |
) | |
# Add event handler for model selection | |
model_choice.change( | |
fn=update_sliderspace_choices, | |
inputs=[model_choice], | |
outputs=[slider_space] | |
) | |
# gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
slider_space, | |
discovered_directions, | |
slider_scale, | |
model_choice | |
], | |
outputs=[result, slider_result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |
# import gradio as gr | |
# import numpy as np | |
# import random | |
# import os | |
# import spaces #[uncomment to use ZeroGPU] | |
# from diffusers import DiffusionPipeline | |
# import torch | |
# from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler | |
# from huggingface_hub import hf_hub_download | |
# from safetensors.torch import load_file | |
# import sys | |
# sys.path.append('.') | |
# from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV | |
# model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
# repo_name = "tianweiy/DMD2" | |
# ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin" | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# if torch.cuda.is_available(): | |
# torch_dtype = torch.bfloat16 | |
# else: | |
# torch_dtype = torch.float32 | |
# # Load model. | |
# unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype) | |
# unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name))) | |
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device) | |
# pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# unet = pipe.unet | |
# ## Change these parameters based on how you trained your sliderspace sliders | |
# train_method = 'xattn-strict' | |
# rank = 1 | |
# alpha =1 | |
# networks = {} | |
# modules = DEFAULT_TARGET_REPLACE | |
# modules += UNET_TARGET_REPLACE_MODULE_CONV | |
# for i in range(1): | |
# networks[i] = LoRANetwork( | |
# unet, | |
# rank=int(rank), | |
# multiplier=1.0, | |
# alpha=int(alpha), | |
# train_method=train_method, | |
# fast_init=True, | |
# ).to(device, dtype=torch_dtype) | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
# def infer( | |
# prompt, | |
# negative_prompt, | |
# seed, | |
# randomize_seed, | |
# width, | |
# height, | |
# guidance_scale, | |
# num_inference_steps, | |
# slider_space, | |
# discovered_directions, | |
# slider_scale, | |
# progress=gr.Progress(track_tqdm=True), | |
# ): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt" | |
# for net in networks: | |
# networks[net].load_state_dict(torch.load(sliderspace_path)) | |
# for net in networks: | |
# networks[net].set_lora_slider(slider_scale) | |
# with networks[0]: | |
# pass | |
# # original image | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# negative_prompt=negative_prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# ).images[0] | |
# # edited image | |
# generator = torch.Generator().manual_seed(seed) | |
# with networks[0]: | |
# slider_image = pipe( | |
# prompt=prompt, | |
# negative_prompt=negative_prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# ).images[0] | |
# return image, slider_image, seed | |
# examples = [ | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
# "An astronaut riding a green horse", | |
# "A delicious ceviche cheesecake slice", | |
# ] | |
# css = """ | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 640px; | |
# } | |
# """ | |
# ORIGINAL_SPACE_ID = 'baulab/SliderSpace' | |
# SPACE_ID = os.getenv('SPACE_ID') | |
# SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine. | |
# <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> | |
# ''' | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models") | |
# # Adding links under the title | |
# gr.Markdown(""" | |
# 🔗 [Project Page](https://sliderspace.baulab.info) | | |
# 💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace) | |
# """) | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0, variant="primary") | |
# # New dropdowns side by side | |
# with gr.Row(): | |
# slider_space = gr.Dropdown( | |
# choices= [ | |
# "alien", | |
# "ancient ruins", | |
# "animal", | |
# "bike", | |
# "car", | |
# "Citadel", | |
# "coral", | |
# "cowboy", | |
# "face", | |
# "futuristic cities", | |
# "monster", | |
# "mystical creature", | |
# "planet", | |
# "plant", | |
# "robot", | |
# "sculpture", | |
# "spaceship", | |
# "statue", | |
# "studio", | |
# "video game", | |
# "wizard" | |
# ], | |
# label="SliderSpace", | |
# value="spaceship" | |
# ) | |
# discovered_directions = gr.Dropdown( | |
# choices=[f"Slider {i}" for i in range(1, 11)], | |
# label="Discovered Directions", | |
# value="Slider 1" | |
# ) | |
# slider_scale = gr.Slider( | |
# label="Slider Scale", | |
# minimum=-4, | |
# maximum=4, | |
# step=0.1, | |
# value=1, | |
# ) | |
# with gr.Row(): | |
# result = gr.Image(label="Original Image", show_label=True) | |
# slider_result = gr.Image(label="Discovered Edit Direction", show_label=True) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=2.0, | |
# step=0.1, | |
# value=0.0, # Replace with defaults that work for your model | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=4, # Replace with defaults that work for your model | |
# ) | |
# # gr.Examples(examples=examples, inputs=[prompt]) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn=infer, | |
# inputs=[ | |
# prompt, | |
# negative_prompt, | |
# seed, | |
# randomize_seed, | |
# width, | |
# height, | |
# guidance_scale, | |
# num_inference_steps, | |
# slider_space, | |
# discovered_directions, | |
# slider_scale | |
# ], | |
# outputs=[result, slider_result, seed], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch(share=True) |