File size: 9,036 Bytes
d7d90be
 
 
5f68bca
7ad90cf
d7d90be
 
7ad90cf
 
 
3bf9025
 
 
7ad90cf
 
 
 
d7d90be
 
7ad90cf
d7d90be
7ad90cf
d7d90be
 
 
7ad90cf
 
 
 
 
 
 
3bf9025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d90be
 
 
 
 
7ad90cf
d7d90be
 
 
 
 
 
 
 
 
ee127cf
 
3bf9025
d7d90be
 
 
 
 
0c8d966
 
3bf9025
 
d7d90be
3bf9025
 
 
 
 
ee127cf
3bf9025
 
d7d90be
3bf9025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d90be
3bf9025
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f25965f
 
 
 
 
 
 
d7d90be
 
f25965f
fc6a452
 
 
 
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
3bf9025
 
 
 
ee127cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf9025
 
 
 
 
 
 
 
 
 
 
2bf0626
 
3bf9025
 
 
 
 
 
 
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee127cf
d7d90be
 
 
 
 
 
 
 
 
ee127cf
d7d90be
 
f3e43f1
d7d90be
 
 
 
 
 
 
 
 
 
 
 
ee127cf
 
3bf9025
d7d90be
3bf9025
d7d90be
 
 
f25965f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import sys
sys.path.append('.')
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV

model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"


device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

# Load model.
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)


unet = pipe.unet

## Change these parameters based on how you trained your sliderspace sliders
train_method = 'xattn-strict'
rank = 1 
alpha =1 
networks = {}
modules = DEFAULT_TARGET_REPLACE
modules += UNET_TARGET_REPLACE_MODULE_CONV
for i in range(1):
    networks[i] = LoRANetwork(
        unet,
        rank=int(rank),
        multiplier=1.0,
        alpha=int(alpha),
        train_method=train_method,
        fast_init=True,
    ).to(device, dtype=torch_dtype)



MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    slider_space,
    discovered_directions,
    slider_scale,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions[-1])-1}.pt"
    
    for net in networks:
        networks[net].load_state_dict(torch.load(sliderspace_path))

    for net in networks:
        networks[net].set_lora_slider(slider_scale)

    with networks[0]:
        pass
    
    # original image
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    # edited image
    generator = torch.Generator().manual_seed(seed)
    with  networks[0]:
        slider_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    
    return image, slider_image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
SPACE_ID = os.getenv('SPACE_ID')

SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
        # Adding links under the title
        gr.Markdown("""
        🔗 [Project Page](https://sliderspace.baulab.info) | 
        💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace)
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")


        # New dropdowns side by side
        with gr.Row():
            slider_space = gr.Dropdown(
                choices= [
                            "alien",
                            "ancient ruins",
                            "animal",
                            "bike",
                            "car",
                            "Citadel",
                            "coral",
                            "cowboy",
                            "face",
                            "futuristic cities",
                            "monster",
                            "mystical creature",
                            "planet",
                            "plant",
                            "robot",
                            "sculpture",
                            "spaceship",
                            "statue",
                            "studio",
                            "video game",
                            "wizard"
                        ],
                label="SliderSpace",
                value="spaceship"
            )
            discovered_directions = gr.Dropdown(
                choices=[f"Slider {i}" for i in range(1, 11)],
                label="Discovered Directions",
                value="Slider 1"
            )

            slider_scale =  gr.Slider(
                    label="Slider Scale",
                    minimum=-10,
                    maximum=10,
                    step=0.1,
                    value=1,  
                )
        
        with gr.Row():
            result = gr.Image(label="Original Image", show_label=True)
            slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
        

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,  # Replace with defaults that work for your model
                )

        # gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            slider_space,
            discovered_directions,
            slider_scale
        ],
        outputs=[result, slider_result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)