Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,036 Bytes
d7d90be 5f68bca 7ad90cf d7d90be 7ad90cf 3bf9025 7ad90cf d7d90be 7ad90cf d7d90be 7ad90cf d7d90be 7ad90cf 3bf9025 d7d90be 7ad90cf d7d90be ee127cf 3bf9025 d7d90be 0c8d966 3bf9025 d7d90be 3bf9025 ee127cf 3bf9025 d7d90be 3bf9025 d7d90be 3bf9025 d7d90be f25965f d7d90be f25965f fc6a452 d7d90be 3bf9025 ee127cf 3bf9025 2bf0626 3bf9025 d7d90be ee127cf d7d90be ee127cf d7d90be f3e43f1 d7d90be ee127cf 3bf9025 d7d90be 3bf9025 d7d90be f25965f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import sys
sys.path.append('.')
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
# Load model.
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
unet = pipe.unet
## Change these parameters based on how you trained your sliderspace sliders
train_method = 'xattn-strict'
rank = 1
alpha =1
networks = {}
modules = DEFAULT_TARGET_REPLACE
modules += UNET_TARGET_REPLACE_MODULE_CONV
for i in range(1):
networks[i] = LoRANetwork(
unet,
rank=int(rank),
multiplier=1.0,
alpha=int(alpha),
train_method=train_method,
fast_init=True,
).to(device, dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
slider_space,
discovered_directions,
slider_scale,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions[-1])-1}.pt"
for net in networks:
networks[net].load_state_dict(torch.load(sliderspace_path))
for net in networks:
networks[net].set_lora_slider(slider_scale)
with networks[0]:
pass
# original image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# edited image
generator = torch.Generator().manual_seed(seed)
with networks[0]:
slider_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, slider_image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
# Adding links under the title
gr.Markdown("""
🔗 [Project Page](https://sliderspace.baulab.info) |
💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
# New dropdowns side by side
with gr.Row():
slider_space = gr.Dropdown(
choices= [
"alien",
"ancient ruins",
"animal",
"bike",
"car",
"Citadel",
"coral",
"cowboy",
"face",
"futuristic cities",
"monster",
"mystical creature",
"planet",
"plant",
"robot",
"sculpture",
"spaceship",
"statue",
"studio",
"video game",
"wizard"
],
label="SliderSpace",
value="spaceship"
)
discovered_directions = gr.Dropdown(
choices=[f"Slider {i}" for i in range(1, 11)],
label="Discovered Directions",
value="Slider 1"
)
slider_scale = gr.Slider(
label="Slider Scale",
minimum=-10,
maximum=10,
step=0.1,
value=1,
)
with gr.Row():
result = gr.Image(label="Original Image", show_label=True)
slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=0.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4, # Replace with defaults that work for your model
)
# gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
slider_space,
discovered_directions,
slider_scale
],
outputs=[result, slider_result, seed],
)
if __name__ == "__main__":
demo.launch(share=True) |