Spaces:
Running
Running
File size: 2,525 Bytes
7b18d60 502159a eb134bd 0659665 7b18d60 68a9c43 0c0c610 68a9c43 0c0c610 0659665 0c0c610 0659665 ebd3d99 65129d9 0659665 ebd3d99 0c0c610 0659665 ebd3d99 eb134bd 542278b eb134bd 0c0c610 ebd3d99 0c0c610 12974e0 0c0c610 12974e0 0c0c610 12974e0 0c0c610 12974e0 0c0c610 12974e0 0c0c610 12974e0 0c0c610 12974e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import time
from transformers import pipeline
import torch
import ffmpeg # Make sure it's ffmpeg-python
# Check if GPU is available
use_gpu = torch.cuda.is_available()
# Configure the pipeline to use the GPU if available
if use_gpu:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
def extract_audio_from_m3u8(url):
try:
output_file = "output_audio.aac"
ffmpeg.input(url).output(output_file).run(overwrite_output=True)
return output_file
except Exception as e:
return f"An error occurred: {e}"
def transcribe_function(audio, state, uploaded_audio, m3u8_url):
if m3u8_url:
audio = extract_audio_from_m3u8(m3u8_url)
if uploaded_audio is not None:
audio = uploaded_audio
if not audio:
return {state_var: state, transcription_var: state} # Return a meaningful message
try:
time.sleep(3)
text = p(audio, chunk_length_s= 50)["text"]
state += text + "\n"
return {state_var: state, transcription_var: state}
except Exception as e:
return {transcription_var: "An error occurred during transcription.", state_var: state} # Handle other exceptions
# ... [most of your code remains unchanged]
def reset_output(transcription, state):
"""Function to reset the state to an empty string."""
return "", ""
with gr.Blocks() as demo:
state_var = gr.State("")
with gr.Row():
with gr.Column():
microphone = gr.Audio(source="microphone", type="filepath", label="Microphone")
uploaded_audio = gr.Audio(label="Upload Audio File", type="filepath", source="upload")
m3u8_url = gr.Textbox(label="m3u8 URL | E.g.: from kvf.fo or logting.fo")
with gr.Column():
transcription_var = gr.Textbox(type="text", label="Transcription", readonly=True)
with gr.Row():
transcribe_button = gr.Button("Transcribe")
reset_button = gr.Button("Reset output")
transcribe_button.click(
transcribe_function,
[microphone, state_var, uploaded_audio, m3u8_url],
[transcription_var, state_var]
)
reset_button.click(
reset_output,
[transcription_var, state_var],
[transcription_var, state_var]
)
demo.launch()
|