Spaces:
Running
Running
Add new input m3u8 URL | E.g.: from kvf.fo or logting.fo (#1)
Browse files- Add new input: m3u8 URL | E.g.: from kvf.fo or logting.fo (a2270aa2db9b23edc1160c9ebff5a096ff5a770a)
- app.py +20 -4
- requirements.txt +3 -0
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import time
|
3 |
from transformers import pipeline
|
4 |
import torch
|
|
|
5 |
|
6 |
# Check if GPU is available
|
7 |
use_gpu = torch.cuda.is_available()
|
@@ -14,13 +15,27 @@ if use_gpu:
|
|
14 |
else:
|
15 |
p = pipeline("automatic-speech-recognition",
|
16 |
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
if uploaded_audio is not None:
|
21 |
audio = uploaded_audio
|
|
|
22 |
if not audio:
|
23 |
return state, state # Return a meaningful message
|
|
|
24 |
try:
|
25 |
time.sleep(3)
|
26 |
text = p(audio, chunk_length_s= 50)["text"]
|
@@ -40,10 +55,11 @@ demo = gr.Interface(
|
|
40 |
inputs=[
|
41 |
gr.components.Audio(source="microphone", type="filepath"),
|
42 |
'state',
|
43 |
-
gr.components.Audio(label="Upload Audio File", type="filepath", source="upload")
|
|
|
44 |
],
|
45 |
outputs=[
|
46 |
-
"
|
47 |
"state"
|
48 |
],
|
49 |
|
|
|
2 |
import time
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
+
import ffmpeg # Make sure it's ffmpeg-python
|
6 |
|
7 |
# Check if GPU is available
|
8 |
use_gpu = torch.cuda.is_available()
|
|
|
15 |
else:
|
16 |
p = pipeline("automatic-speech-recognition",
|
17 |
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
|
|
|
18 |
|
19 |
+
|
20 |
+
def extract_audio_from_m3u8(url):
|
21 |
+
try:
|
22 |
+
output_file = "output_audio.aac"
|
23 |
+
ffmpeg.input(url).output(output_file).run(overwrite_output=True)
|
24 |
+
return output_file
|
25 |
+
except Exception as e:
|
26 |
+
return f"An error occurred: {e}"
|
27 |
+
|
28 |
+
|
29 |
+
def transcribe(audio, state="", uploaded_audio=None, m3u8_url=""):
|
30 |
+
if m3u8_url:
|
31 |
+
audio = extract_audio_from_m3u8(m3u8_url)
|
32 |
+
|
33 |
if uploaded_audio is not None:
|
34 |
audio = uploaded_audio
|
35 |
+
|
36 |
if not audio:
|
37 |
return state, state # Return a meaningful message
|
38 |
+
|
39 |
try:
|
40 |
time.sleep(3)
|
41 |
text = p(audio, chunk_length_s= 50)["text"]
|
|
|
55 |
inputs=[
|
56 |
gr.components.Audio(source="microphone", type="filepath"),
|
57 |
'state',
|
58 |
+
gr.components.Audio(label="Upload Audio File", type="filepath", source="upload"),
|
59 |
+
gr.components.Textbox(label="m3u8 URL | E.g.: from kvf.fo or logting.fo")
|
60 |
],
|
61 |
outputs=[
|
62 |
+
gr.components.Textbox(type="text"),
|
63 |
"state"
|
64 |
],
|
65 |
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
torch
|
2 |
transformers
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
+
gradio
|
4 |
+
ffmpeg-python
|
5 |
+
ffmpeg
|