barabum's picture
init
be8014d
raw
history blame
879 Bytes
import numpy
from sentence_transformers import SentenceTransformer, util
from PIL import Image
import gradio as gr
model = SentenceTransformer('clip-ViT-B-32')
def image_classifier(im1: numpy.ndarray, im2: numpy.ndarray):
encoded_image = model.encode([Image.fromarray(im1), Image.fromarray(im2)], batch_size=128,
convert_to_tensor=True, show_progress_bar=True)
processed_images = util.paraphrase_mining_embeddings(encoded_image)
return processed_images[0][0]
with gr.Blocks() as b:
with gr.Row():
with gr.Column():
image1 = gr.Image(label="image 1")
image2 = gr.Image(label="image 2")
with gr.Row():
compare = gr.Button("Compare")
output = gr.Label(label="output")
compare.click(fn=image_classifier, inputs=[image1, image2], outputs=output)
b.launch()