File size: 879 Bytes
5651d98
 
 
be8014d
5651d98
 
 
be8014d
5651d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be8014d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy
from sentence_transformers import SentenceTransformer, util
from PIL import Image
import gradio as gr

model = SentenceTransformer('clip-ViT-B-32')


def image_classifier(im1: numpy.ndarray, im2: numpy.ndarray):
    encoded_image = model.encode([Image.fromarray(im1), Image.fromarray(im2)], batch_size=128,
                                 convert_to_tensor=True, show_progress_bar=True)
    processed_images = util.paraphrase_mining_embeddings(encoded_image)
    return processed_images[0][0]


with gr.Blocks() as b:
    with gr.Row():
        with gr.Column():
            image1 = gr.Image(label="image 1")
            image2 = gr.Image(label="image 2")
            with gr.Row():
                compare = gr.Button("Compare")
        output = gr.Label(label="output")
    compare.click(fn=image_classifier, inputs=[image1, image2], outputs=output)

b.launch()