Spaces:
Runtime error
Runtime error
Optimized to generate translation on only 1 sample
#2
by
pranavkarande
- opened
- app.py +3 -4
- generate.py +426 -0
app.py
CHANGED
|
@@ -10,7 +10,6 @@ import sys
|
|
| 10 |
import os
|
| 11 |
import subprocess
|
| 12 |
from pydub import AudioSegment
|
| 13 |
-
from huggingface_hub import snapshot_download
|
| 14 |
|
| 15 |
def install_fairseq():
|
| 16 |
try:
|
|
@@ -67,7 +66,7 @@ def run_my_code(input_text, language):
|
|
| 67 |
|
| 68 |
print("------Performing translation...")
|
| 69 |
|
| 70 |
-
translation_result = subprocess.run(["
|
| 71 |
translation_result_text = translation_result.stdout
|
| 72 |
|
| 73 |
lines = translation_result_text.split("\n")
|
|
@@ -91,7 +90,7 @@ install_fairseq()
|
|
| 91 |
# gr.inputs.Dropdown(list(LANGUAGE_CODES.keys()), default="Hindi", label="From English to Languages X..."),
|
| 92 |
# ]
|
| 93 |
|
| 94 |
-
|
| 95 |
#input=gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)...")
|
| 96 |
#audio=convert_audio_to_16k_wav(input)
|
| 97 |
output_textbox = gr.outputs.Textbox(label="Output Text")
|
|
@@ -99,7 +98,7 @@ output_textbox = gr.outputs.Textbox(label="Output Text")
|
|
| 99 |
# Create a Gradio interface
|
| 100 |
iface = gr.Interface(
|
| 101 |
fn=run_my_code,
|
| 102 |
-
inputs=[
|
| 103 |
outputs=output_textbox,
|
| 104 |
title="English to Hindi Translator")
|
| 105 |
|
|
|
|
| 10 |
import os
|
| 11 |
import subprocess
|
| 12 |
from pydub import AudioSegment
|
|
|
|
| 13 |
|
| 14 |
def install_fairseq():
|
| 15 |
try:
|
|
|
|
| 66 |
|
| 67 |
print("------Performing translation...")
|
| 68 |
|
| 69 |
+
translation_result = subprocess.run(["python", "generate.py", data_root, "--config-yaml", "config_st.yaml", "--gen-subset", "tst-COMMON_st", "--task", "speech_to_text", "--path", model_checkpoint], capture_output=True, text=True)
|
| 70 |
translation_result_text = translation_result.stdout
|
| 71 |
|
| 72 |
lines = translation_result_text.split("\n")
|
|
|
|
| 90 |
# gr.inputs.Dropdown(list(LANGUAGE_CODES.keys()), default="Hindi", label="From English to Languages X..."),
|
| 91 |
# ]
|
| 92 |
|
| 93 |
+
input_textbox = gr.inputs.Textbox(label="test2.wav")
|
| 94 |
#input=gr.inputs.Audio(source="microphone", type="filepath", label="Record something (in English)...")
|
| 95 |
#audio=convert_audio_to_16k_wav(input)
|
| 96 |
output_textbox = gr.outputs.Textbox(label="Output Text")
|
|
|
|
| 98 |
# Create a Gradio interface
|
| 99 |
iface = gr.Interface(
|
| 100 |
fn=run_my_code,
|
| 101 |
+
inputs=[input_textbox, gr.inputs.Radio(["Hindi", "French"], label="Language")],
|
| 102 |
outputs=output_textbox,
|
| 103 |
title="English to Hindi Translator")
|
| 104 |
|
generate.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3 -u
|
| 2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the MIT license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
"""
|
| 7 |
+
Translate pre-processed data with a trained model.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import ast
|
| 11 |
+
import logging
|
| 12 |
+
import math
|
| 13 |
+
import os
|
| 14 |
+
import sys
|
| 15 |
+
from argparse import Namespace
|
| 16 |
+
from itertools import chain
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
from omegaconf import DictConfig
|
| 21 |
+
|
| 22 |
+
from fairseq import checkpoint_utils, options, scoring, tasks, utils
|
| 23 |
+
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
|
| 24 |
+
from fairseq.logging import progress_bar
|
| 25 |
+
from fairseq.logging.meters import StopwatchMeter, TimeMeter
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main(cfg: DictConfig):
|
| 29 |
+
|
| 30 |
+
if isinstance(cfg, Namespace):
|
| 31 |
+
cfg = convert_namespace_to_omegaconf(cfg)
|
| 32 |
+
|
| 33 |
+
assert cfg.common_eval.path is not None, "--path required for generation!"
|
| 34 |
+
assert (
|
| 35 |
+
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
|
| 36 |
+
), "--sampling requires --nbest to be equal to --beam"
|
| 37 |
+
assert (
|
| 38 |
+
cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw"
|
| 39 |
+
), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"
|
| 40 |
+
|
| 41 |
+
if cfg.common_eval.results_path is not None:
|
| 42 |
+
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
|
| 43 |
+
output_path = os.path.join(
|
| 44 |
+
cfg.common_eval.results_path,
|
| 45 |
+
"generate-{}.txt".format(cfg.dataset.gen_subset),
|
| 46 |
+
)
|
| 47 |
+
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
|
| 48 |
+
return _main(cfg, h)
|
| 49 |
+
else:
|
| 50 |
+
return _main(cfg, sys.stdout)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_symbols_to_strip_from_output(generator):
|
| 54 |
+
if hasattr(generator, "symbols_to_strip_from_output"):
|
| 55 |
+
return generator.symbols_to_strip_from_output
|
| 56 |
+
else:
|
| 57 |
+
return {generator.eos}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def _main(cfg: DictConfig, output_file):
|
| 61 |
+
logging.basicConfig(
|
| 62 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 63 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 64 |
+
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
| 65 |
+
stream=output_file,
|
| 66 |
+
)
|
| 67 |
+
logger = logging.getLogger("fairseq_cli.generate")
|
| 68 |
+
|
| 69 |
+
utils.import_user_module(cfg.common)
|
| 70 |
+
|
| 71 |
+
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
|
| 72 |
+
cfg.dataset.max_tokens = 12000
|
| 73 |
+
logger.info(cfg)
|
| 74 |
+
|
| 75 |
+
# Fix seed for stochastic decoding
|
| 76 |
+
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
|
| 77 |
+
np.random.seed(cfg.common.seed)
|
| 78 |
+
utils.set_torch_seed(cfg.common.seed)
|
| 79 |
+
|
| 80 |
+
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
|
| 81 |
+
|
| 82 |
+
# Load dataset splits
|
| 83 |
+
task = tasks.setup_task(cfg.task)
|
| 84 |
+
|
| 85 |
+
# Set dictionaries
|
| 86 |
+
try:
|
| 87 |
+
src_dict = getattr(task, "source_dictionary", None)
|
| 88 |
+
except NotImplementedError:
|
| 89 |
+
src_dict = None
|
| 90 |
+
tgt_dict = task.target_dictionary
|
| 91 |
+
|
| 92 |
+
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
|
| 93 |
+
|
| 94 |
+
# Load ensemble
|
| 95 |
+
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
|
| 96 |
+
models, saved_cfg = checkpoint_utils.load_model_ensemble(
|
| 97 |
+
utils.split_paths(cfg.common_eval.path),
|
| 98 |
+
arg_overrides=overrides,
|
| 99 |
+
task=task,
|
| 100 |
+
suffix=cfg.checkpoint.checkpoint_suffix,
|
| 101 |
+
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
|
| 102 |
+
num_shards=cfg.checkpoint.checkpoint_shard_count,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
|
| 106 |
+
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
|
| 107 |
+
|
| 108 |
+
if cfg.generation.lm_path is not None:
|
| 109 |
+
overrides["data"] = cfg.task.data
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
lms, _ = checkpoint_utils.load_model_ensemble(
|
| 113 |
+
[cfg.generation.lm_path], arg_overrides=overrides, task=None
|
| 114 |
+
)
|
| 115 |
+
except:
|
| 116 |
+
logger.warning(
|
| 117 |
+
f"Failed to load language model! Please make sure that the language model dict is the same "
|
| 118 |
+
f"as target dict and is located in the data dir ({cfg.task.data})"
|
| 119 |
+
)
|
| 120 |
+
raise
|
| 121 |
+
|
| 122 |
+
assert len(lms) == 1
|
| 123 |
+
else:
|
| 124 |
+
lms = [None]
|
| 125 |
+
|
| 126 |
+
# Optimize ensemble for generation
|
| 127 |
+
for model in chain(models, lms):
|
| 128 |
+
if model is None:
|
| 129 |
+
continue
|
| 130 |
+
if cfg.common.fp16:
|
| 131 |
+
model.half()
|
| 132 |
+
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
|
| 133 |
+
model.cuda()
|
| 134 |
+
model.prepare_for_inference_(cfg)
|
| 135 |
+
|
| 136 |
+
# Load alignment dictionary for unknown word replacement
|
| 137 |
+
# (None if no unknown word replacement, empty if no path to align dictionary)
|
| 138 |
+
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
|
| 139 |
+
|
| 140 |
+
# Load dataset (possibly sharded)
|
| 141 |
+
itr = task.get_batch_iterator(
|
| 142 |
+
dataset=task.dataset(cfg.dataset.gen_subset),
|
| 143 |
+
max_tokens=cfg.dataset.max_tokens,
|
| 144 |
+
max_sentences=cfg.dataset.batch_size,
|
| 145 |
+
max_positions=utils.resolve_max_positions(
|
| 146 |
+
task.max_positions(), *[m.max_positions() for m in models]
|
| 147 |
+
),
|
| 148 |
+
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
|
| 149 |
+
#required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
|
| 150 |
+
seed=cfg.common.seed,
|
| 151 |
+
num_shards=cfg.distributed_training.distributed_world_size,
|
| 152 |
+
shard_id=cfg.distributed_training.distributed_rank,
|
| 153 |
+
num_workers=cfg.dataset.num_workers,
|
| 154 |
+
data_buffer_size=cfg.dataset.data_buffer_size,
|
| 155 |
+
).next_epoch_itr(shuffle=False)
|
| 156 |
+
print("Hello world", itr.n)
|
| 157 |
+
progress = progress_bar.progress_bar(
|
| 158 |
+
itr,
|
| 159 |
+
log_format=cfg.common.log_format,
|
| 160 |
+
log_interval=cfg.common.log_interval,
|
| 161 |
+
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Initialize generator
|
| 165 |
+
gen_timer = StopwatchMeter()
|
| 166 |
+
|
| 167 |
+
extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight}
|
| 168 |
+
generator = task.build_generator(
|
| 169 |
+
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Handle tokenization and BPE
|
| 173 |
+
tokenizer = task.build_tokenizer(cfg.tokenizer)
|
| 174 |
+
bpe = task.build_bpe(cfg.bpe)
|
| 175 |
+
|
| 176 |
+
def decode_fn(x):
|
| 177 |
+
if bpe is not None:
|
| 178 |
+
x = bpe.decode(x)
|
| 179 |
+
if tokenizer is not None:
|
| 180 |
+
x = tokenizer.decode(x)
|
| 181 |
+
return x
|
| 182 |
+
|
| 183 |
+
scorer = scoring.build_scorer(cfg.scoring, tgt_dict)
|
| 184 |
+
|
| 185 |
+
num_sentences = 0
|
| 186 |
+
has_target = True
|
| 187 |
+
wps_meter = TimeMeter()
|
| 188 |
+
for sample in progress:
|
| 189 |
+
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
| 190 |
+
if "net_input" not in sample:
|
| 191 |
+
continue
|
| 192 |
+
|
| 193 |
+
prefix_tokens = None
|
| 194 |
+
if cfg.generation.prefix_size > 0:
|
| 195 |
+
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
|
| 196 |
+
|
| 197 |
+
constraints = None
|
| 198 |
+
if "constraints" in sample:
|
| 199 |
+
constraints = sample["constraints"]
|
| 200 |
+
|
| 201 |
+
gen_timer.start()
|
| 202 |
+
hypos = task.inference_step(
|
| 203 |
+
generator,
|
| 204 |
+
models,
|
| 205 |
+
sample,
|
| 206 |
+
prefix_tokens=prefix_tokens,
|
| 207 |
+
constraints=constraints,
|
| 208 |
+
)
|
| 209 |
+
# for ijkl in hypos:
|
| 210 |
+
# if ("tokens" not in ijkl[0]):
|
| 211 |
+
# print("Hello there bruh")
|
| 212 |
+
# print(ijkl)
|
| 213 |
+
# print(type(hypos))
|
| 214 |
+
# print(hypos[0])
|
| 215 |
+
#hypos = [ijkl for ijkl in hypos if ijkl != []]
|
| 216 |
+
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
|
| 217 |
+
gen_timer.stop(num_generated_tokens)
|
| 218 |
+
|
| 219 |
+
for i, sample_id in enumerate(sample["id"].tolist()):
|
| 220 |
+
has_target = sample["target"] is not None
|
| 221 |
+
|
| 222 |
+
# Remove padding
|
| 223 |
+
if "src_tokens" in sample["net_input"]:
|
| 224 |
+
src_tokens = utils.strip_pad(
|
| 225 |
+
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
|
| 226 |
+
)
|
| 227 |
+
else:
|
| 228 |
+
src_tokens = None
|
| 229 |
+
|
| 230 |
+
target_tokens = None
|
| 231 |
+
if has_target:
|
| 232 |
+
target_tokens = (
|
| 233 |
+
utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Either retrieve the original sentences or regenerate them from tokens.
|
| 237 |
+
if align_dict is not None:
|
| 238 |
+
src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text(
|
| 239 |
+
sample_id
|
| 240 |
+
)
|
| 241 |
+
target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text(
|
| 242 |
+
sample_id
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
if src_dict is not None:
|
| 246 |
+
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
|
| 247 |
+
else:
|
| 248 |
+
src_str = ""
|
| 249 |
+
if has_target:
|
| 250 |
+
target_str = tgt_dict.string(
|
| 251 |
+
target_tokens,
|
| 252 |
+
cfg.common_eval.post_process,
|
| 253 |
+
escape_unk=True,
|
| 254 |
+
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
|
| 255 |
+
generator
|
| 256 |
+
),
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
src_str = decode_fn(src_str)
|
| 260 |
+
if has_target:
|
| 261 |
+
target_str = decode_fn(target_str)
|
| 262 |
+
|
| 263 |
+
if not cfg.common_eval.quiet:
|
| 264 |
+
if src_dict is not None:
|
| 265 |
+
print("S-{}\t{}".format(sample_id, src_str), file=output_file)
|
| 266 |
+
if has_target:
|
| 267 |
+
print("T-{}\t{}".format(sample_id, target_str), file=output_file)
|
| 268 |
+
|
| 269 |
+
# Process top predictions
|
| 270 |
+
|
| 271 |
+
for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]):
|
| 272 |
+
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
|
| 273 |
+
hypo_tokens=hypo["tokens"].int().cpu(),
|
| 274 |
+
src_str=src_str,
|
| 275 |
+
alignment=hypo["alignment"],
|
| 276 |
+
align_dict=align_dict,
|
| 277 |
+
tgt_dict=tgt_dict,
|
| 278 |
+
remove_bpe=cfg.common_eval.post_process,
|
| 279 |
+
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
|
| 280 |
+
)
|
| 281 |
+
detok_hypo_str = decode_fn(hypo_str)
|
| 282 |
+
if not cfg.common_eval.quiet:
|
| 283 |
+
score = hypo["score"] / math.log(2) # convert to base 2
|
| 284 |
+
# original hypothesis (after tokenization and BPE)
|
| 285 |
+
print(
|
| 286 |
+
"H-{}\t{}\t{}".format(sample_id, score, hypo_str),
|
| 287 |
+
file=output_file,
|
| 288 |
+
)
|
| 289 |
+
# detokenized hypothesis
|
| 290 |
+
print(
|
| 291 |
+
"D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str),
|
| 292 |
+
file=output_file,
|
| 293 |
+
)
|
| 294 |
+
print(
|
| 295 |
+
"P-{}\t{}".format(
|
| 296 |
+
sample_id,
|
| 297 |
+
" ".join(
|
| 298 |
+
map(
|
| 299 |
+
lambda x: "{:.4f}".format(x),
|
| 300 |
+
# convert from base e to base 2
|
| 301 |
+
hypo["positional_scores"]
|
| 302 |
+
.div_(math.log(2))
|
| 303 |
+
.tolist(),
|
| 304 |
+
)
|
| 305 |
+
),
|
| 306 |
+
),
|
| 307 |
+
file=output_file,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
if cfg.generation.print_alignment == "hard":
|
| 311 |
+
print(
|
| 312 |
+
"A-{}\t{}".format(
|
| 313 |
+
sample_id,
|
| 314 |
+
" ".join(
|
| 315 |
+
[
|
| 316 |
+
"{}-{}".format(src_idx, tgt_idx)
|
| 317 |
+
for src_idx, tgt_idx in alignment
|
| 318 |
+
]
|
| 319 |
+
),
|
| 320 |
+
),
|
| 321 |
+
file=output_file,
|
| 322 |
+
)
|
| 323 |
+
if cfg.generation.print_alignment == "soft":
|
| 324 |
+
print(
|
| 325 |
+
"A-{}\t{}".format(
|
| 326 |
+
sample_id,
|
| 327 |
+
" ".join(
|
| 328 |
+
[",".join(src_probs) for src_probs in alignment]
|
| 329 |
+
),
|
| 330 |
+
),
|
| 331 |
+
file=output_file,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if cfg.generation.print_step:
|
| 335 |
+
print(
|
| 336 |
+
"I-{}\t{}".format(sample_id, hypo["steps"]),
|
| 337 |
+
file=output_file,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
if cfg.generation.retain_iter_history:
|
| 341 |
+
for step, h in enumerate(hypo["history"]):
|
| 342 |
+
_, h_str, _ = utils.post_process_prediction(
|
| 343 |
+
hypo_tokens=h["tokens"].int().cpu(),
|
| 344 |
+
src_str=src_str,
|
| 345 |
+
alignment=None,
|
| 346 |
+
align_dict=None,
|
| 347 |
+
tgt_dict=tgt_dict,
|
| 348 |
+
remove_bpe=None,
|
| 349 |
+
)
|
| 350 |
+
print(
|
| 351 |
+
"E-{}_{}\t{}".format(sample_id, step, h_str),
|
| 352 |
+
file=output_file,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Score only the top hypothesis
|
| 356 |
+
if has_target and j == 0:
|
| 357 |
+
if (
|
| 358 |
+
align_dict is not None
|
| 359 |
+
or cfg.common_eval.post_process is not None
|
| 360 |
+
):
|
| 361 |
+
# Convert back to tokens for evaluation with unk replacement and/or without BPE
|
| 362 |
+
target_tokens = tgt_dict.encode_line(
|
| 363 |
+
target_str, add_if_not_exist=True
|
| 364 |
+
)
|
| 365 |
+
hypo_tokens = tgt_dict.encode_line(
|
| 366 |
+
detok_hypo_str, add_if_not_exist=True
|
| 367 |
+
)
|
| 368 |
+
if hasattr(scorer, "add_string"):
|
| 369 |
+
scorer.add_string(target_str, detok_hypo_str)
|
| 370 |
+
else:
|
| 371 |
+
scorer.add(target_tokens, hypo_tokens)
|
| 372 |
+
|
| 373 |
+
wps_meter.update(num_generated_tokens)
|
| 374 |
+
progress.log({"wps": round(wps_meter.avg)})
|
| 375 |
+
num_sentences += (
|
| 376 |
+
sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
logger.info("NOTE: hypothesis and token scores are output in base 2")
|
| 380 |
+
logger.info(
|
| 381 |
+
"Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
|
| 382 |
+
num_sentences,
|
| 383 |
+
gen_timer.n,
|
| 384 |
+
gen_timer.sum,
|
| 385 |
+
num_sentences / gen_timer.sum,
|
| 386 |
+
1.0 / gen_timer.avg,
|
| 387 |
+
)
|
| 388 |
+
)
|
| 389 |
+
if has_target:
|
| 390 |
+
if cfg.bpe and not cfg.generation.sacrebleu:
|
| 391 |
+
if cfg.common_eval.post_process:
|
| 392 |
+
logger.warning(
|
| 393 |
+
"BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
|
| 394 |
+
)
|
| 395 |
+
else:
|
| 396 |
+
logger.warning(
|
| 397 |
+
"If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization"
|
| 398 |
+
)
|
| 399 |
+
# use print to be consistent with other main outputs: S-, H-, T-, D- and so on
|
| 400 |
+
print(
|
| 401 |
+
"Generate {} with beam={}: {}".format(
|
| 402 |
+
cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string()
|
| 403 |
+
),
|
| 404 |
+
file=output_file,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
return scorer
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def cli_main():
|
| 411 |
+
parser = options.get_generation_parser()
|
| 412 |
+
# TODO: replace this workaround with refactoring of `AudioPretraining`
|
| 413 |
+
parser.add_argument(
|
| 414 |
+
"--arch",
|
| 415 |
+
"-a",
|
| 416 |
+
metavar="ARCH",
|
| 417 |
+
default="wav2vec2",
|
| 418 |
+
help="Model architecture. For constructing tasks that rely on "
|
| 419 |
+
"model args (e.g. `AudioPretraining`)",
|
| 420 |
+
)
|
| 421 |
+
args = options.parse_args_and_arch(parser)
|
| 422 |
+
main(args)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
if __name__ == "__main__":
|
| 426 |
+
cli_main()
|