This PR makes the space work again
#13
by
Fabrice-TIERCELIN
- opened
- README.md +3 -42
- app.py +246 -60
- requirements.txt +2 -1
README.md
CHANGED
@@ -3,46 +3,7 @@ title: 📺RTV🖼️ - Real Time Video AI
|
|
3 |
emoji: 🖼️📺
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
6 |
-
|
7 |
-
sdk_version: 4.4.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
license: other
|
11 |
-
|
12 |
-
|
13 |
-
1. Process Images in real time with prompts:
|
14 |
-
2. Example:
|
15 |
-
- Elves Toy Factories North Pole Christmas Magic Elf Happy Magical Toy Robots Polar Bears Creatures Winter Streets with Holiday Festivals Christmas Present Lists Toys Candy Books Christmas Fun Facts
|
16 |
-
Happy New Years
|
17 |
-
3. Add prompt here and download images: https://huggingface.co/spaces/awacke1/RealTimeImageGen
|
18 |
-
4. Load images to 01.png thru 09.png below
|
19 |
-
5. Rebuild
|
20 |
-
|
21 |
-
|
22 |
-
One of the greatest new generative AI models. This model is being tested to generate Christmas themed videos including:
|
23 |
-
1. Reindeer
|
24 |
-
2. Sunset and Sunrise views of Christmas Eve and Christmas Day
|
25 |
-
3. Saint Nicholas
|
26 |
-
4. Elves and Toy Factories
|
27 |
-
5. Polar Bears, and Other Winter Creatures
|
28 |
-
6. Winter Streets with Holiday Festivals
|
29 |
-
7. Christmas Present Lists Toys and Candy
|
30 |
-
8. Books of Christmas with Fun Facts
|
31 |
-
9. Happy New Years!
|
32 |
-
|
33 |
-
-In app.py this is implemented here and will cache the examples and process while loading creating 4 second videos for each image:
|
34 |
-
|
35 |
-
```
|
36 |
-
gr.Examples(
|
37 |
-
examples=[
|
38 |
-
"images/01.png",
|
39 |
-
"images/02.png",
|
40 |
-
"images/03.png",
|
41 |
-
"images/04.png",
|
42 |
-
"images/05.png",
|
43 |
-
"images/06.png",
|
44 |
-
"images/07.png",
|
45 |
-
"images/08.png",
|
46 |
-
"images/09.png"
|
47 |
-
],
|
48 |
-
```
|
|
|
3 |
emoji: 🖼️📺
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
6 |
+
short_description: Animate Your Pictures With Stable VIdeo DIffusion
|
|
|
|
|
|
|
7 |
license: other
|
8 |
+
sdk: gradio
|
9 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,114 +1,300 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import os
|
4 |
-
import uuid
|
5 |
import random
|
|
|
|
|
|
|
6 |
from glob import glob
|
7 |
from pathlib import Path
|
8 |
-
from typing import Optional
|
|
|
9 |
from diffusers import StableVideoDiffusionPipeline
|
10 |
-
from diffusers.utils import
|
11 |
from PIL import Image
|
12 |
-
from huggingface_hub import hf_hub_download
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
"stabilityai/stable-video-diffusion-img2vid
|
17 |
)
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
-
def
|
24 |
image: Image,
|
25 |
seed: Optional[int] = 42,
|
26 |
randomize_seed: bool = True,
|
27 |
motion_bucket_id: int = 127,
|
28 |
-
fps_id: int =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
os.makedirs(output_folder, exist_ok=True)
|
44 |
-
base_count = len(glob(os.path.join(output_folder, "*.
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
|
|
|
|
|
|
|
52 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
53 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
54 |
|
|
|
55 |
if image_aspect > target_aspect:
|
|
|
56 |
new_height = output_size[1]
|
57 |
new_width = int(new_height * image_aspect)
|
58 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
59 |
left = (new_width - output_size[0]) / 2
|
60 |
top = 0
|
61 |
right = (new_width + output_size[0]) / 2
|
62 |
bottom = output_size[1]
|
63 |
else:
|
|
|
64 |
new_width = output_size[0]
|
65 |
new_height = int(new_width / image_aspect)
|
66 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
67 |
left = 0
|
68 |
top = (new_height - output_size[1]) / 2
|
69 |
right = output_size[0]
|
70 |
bottom = (new_height + output_size[1]) / 2
|
71 |
|
72 |
-
|
73 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
83 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
gr.Examples(
|
101 |
examples=[
|
102 |
-
"images/01.png",
|
103 |
-
"images/02.png",
|
104 |
-
"images/03.png",
|
105 |
],
|
106 |
-
inputs=image,
|
107 |
-
outputs=[
|
108 |
-
fn=
|
109 |
-
|
|
|
110 |
)
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
-
demo.
|
114 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import os
|
|
|
4 |
import random
|
5 |
+
import time
|
6 |
+
import math
|
7 |
+
import spaces
|
8 |
from glob import glob
|
9 |
from pathlib import Path
|
10 |
+
from typing import Optional, List, Union
|
11 |
+
|
12 |
from diffusers import StableVideoDiffusionPipeline
|
13 |
+
from diffusers.utils import export_to_video, export_to_gif
|
14 |
from PIL import Image
|
|
|
15 |
|
16 |
+
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
17 |
+
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
18 |
+
)
|
19 |
+
fps25Pipe.to("cuda")
|
20 |
|
21 |
+
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
22 |
+
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
|
23 |
)
|
24 |
+
fps14Pipe.to("cuda")
|
25 |
+
|
26 |
+
dragnuwaPipe = StableVideoDiffusionPipeline.from_pretrained(
|
27 |
+
"a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
|
28 |
+
)
|
29 |
+
dragnuwaPipe.to("cuda")
|
30 |
|
31 |
+
max_64_bit_int = 2**63 - 1
|
32 |
|
33 |
+
def animate(
|
34 |
image: Image,
|
35 |
seed: Optional[int] = 42,
|
36 |
randomize_seed: bool = True,
|
37 |
motion_bucket_id: int = 127,
|
38 |
+
fps_id: int = 25,
|
39 |
+
noise_aug_strength: float = 0.1,
|
40 |
+
decoding_t: int = 3,
|
41 |
+
video_format: str = "mp4",
|
42 |
+
frame_format: str = "webp",
|
43 |
+
version: str = "auto",
|
44 |
+
width: int = 1024,
|
45 |
+
height: int = 576,
|
46 |
+
motion_control: bool = False,
|
47 |
+
num_inference_steps: int = 25
|
48 |
):
|
49 |
+
start = time.time()
|
50 |
+
|
51 |
+
if image is None:
|
52 |
+
raise gr.Error("Please provide an image to animate.")
|
53 |
+
|
54 |
+
output_folder = "outputs"
|
55 |
+
image_data = resize_image(image, output_size=(width, height))
|
56 |
+
if image_data.mode == "RGBA":
|
57 |
+
image_data = image_data.convert("RGB")
|
58 |
+
|
59 |
+
if motion_control:
|
60 |
+
image_data = [image_data] * 2
|
61 |
|
62 |
+
if randomize_seed:
|
63 |
+
seed = random.randint(0, max_64_bit_int)
|
64 |
+
|
65 |
+
if version == "auto":
|
66 |
+
if 14 < fps_id:
|
67 |
+
version = "svdxt"
|
68 |
+
else:
|
69 |
+
version = "svd"
|
70 |
|
71 |
+
frames = animate_on_gpu(
|
72 |
+
image_data,
|
73 |
+
seed,
|
74 |
+
motion_bucket_id,
|
75 |
+
fps_id,
|
76 |
+
noise_aug_strength,
|
77 |
+
decoding_t,
|
78 |
+
version,
|
79 |
+
width,
|
80 |
+
height,
|
81 |
+
num_inference_steps
|
82 |
+
)
|
83 |
+
|
84 |
os.makedirs(output_folder, exist_ok=True)
|
85 |
+
base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
|
86 |
+
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)
|
87 |
+
|
88 |
+
if video_format == "gif":
|
89 |
+
video_path = None
|
90 |
+
gif_path = result_path
|
91 |
+
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
|
92 |
+
else:
|
93 |
+
video_path = result_path
|
94 |
+
gif_path = None
|
95 |
+
export_to_video(frames, video_path, fps=fps_id)
|
96 |
+
|
97 |
+
end = time.time()
|
98 |
+
secondes = int(end - start)
|
99 |
+
minutes = math.floor(secondes / 60)
|
100 |
+
secondes = secondes - (minutes * 60)
|
101 |
+
hours = math.floor(minutes / 60)
|
102 |
+
minutes = minutes - (hours * 60)
|
103 |
+
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
104 |
+
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
|
105 |
+
"The video has been generated in " + \
|
106 |
+
((str(hours) + " h, ") if hours != 0 else "") + \
|
107 |
+
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
108 |
+
str(secondes) + " sec."
|
109 |
+
|
110 |
+
return [
|
111 |
+
# Display for video
|
112 |
+
gr.update(value = video_path, visible = video_format != "gif"),
|
113 |
+
# Display for gif
|
114 |
+
gr.update(value = gif_path, visible = video_format == "gif"),
|
115 |
+
# Download button
|
116 |
+
gr.update(label = "💾 Download animation in *." + video_format + " format", value=result_path, visible=True),
|
117 |
+
# Frames
|
118 |
+
gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True),
|
119 |
+
# Used seed
|
120 |
+
seed,
|
121 |
+
# Information
|
122 |
+
gr.update(value = information, visible = True),
|
123 |
+
# Reset button
|
124 |
+
gr.update(visible = True)
|
125 |
+
]
|
126 |
+
|
127 |
+
@torch.no_grad()
|
128 |
+
@spaces.GPU(duration=180)
|
129 |
+
def animate_on_gpu(
|
130 |
+
image_data: Union[Image.Image, List[Image.Image]],
|
131 |
+
seed: Optional[int] = 42,
|
132 |
+
motion_bucket_id: int = 127,
|
133 |
+
fps_id: int = 6,
|
134 |
+
noise_aug_strength: float = 0.1,
|
135 |
+
decoding_t: int = 3,
|
136 |
+
version: str = "svdxt",
|
137 |
+
width: int = 1024,
|
138 |
+
height: int = 576,
|
139 |
+
num_inference_steps: int = 25
|
140 |
+
):
|
141 |
+
generator = torch.manual_seed(seed)
|
142 |
+
|
143 |
+
if version == "dragnuwa":
|
144 |
+
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
145 |
+
elif version == "svdxt":
|
146 |
+
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
147 |
+
else:
|
148 |
+
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
149 |
+
|
150 |
|
151 |
def resize_image(image, output_size=(1024, 576)):
|
152 |
+
# Do not touch the image if the size is good
|
153 |
+
if image.width == output_size[0] and image.height == output_size[1]:
|
154 |
+
return image
|
155 |
+
|
156 |
+
# Calculate aspect ratios
|
157 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
158 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
159 |
|
160 |
+
# Resize if the original image is larger
|
161 |
if image_aspect > target_aspect:
|
162 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
163 |
new_height = output_size[1]
|
164 |
new_width = int(new_height * image_aspect)
|
165 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
166 |
+
# Calculate coordinates for cropping
|
167 |
left = (new_width - output_size[0]) / 2
|
168 |
top = 0
|
169 |
right = (new_width + output_size[0]) / 2
|
170 |
bottom = output_size[1]
|
171 |
else:
|
172 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
173 |
new_width = output_size[0]
|
174 |
new_height = int(new_width / image_aspect)
|
175 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
176 |
+
# Calculate coordinates for cropping
|
177 |
left = 0
|
178 |
top = (new_height - output_size[1]) / 2
|
179 |
right = output_size[0]
|
180 |
bottom = (new_height + output_size[1]) / 2
|
181 |
|
182 |
+
# Crop the image
|
183 |
+
return resized_image.crop((left, top, right, bottom))
|
184 |
+
|
185 |
+
def reset():
|
186 |
+
return [
|
187 |
+
None,
|
188 |
+
random.randint(0, max_64_bit_int),
|
189 |
+
True,
|
190 |
+
127,
|
191 |
+
6,
|
192 |
+
0.1,
|
193 |
+
3,
|
194 |
+
"mp4",
|
195 |
+
"webp",
|
196 |
+
"auto",
|
197 |
+
1024,
|
198 |
+
576,
|
199 |
+
False,
|
200 |
+
25
|
201 |
+
]
|
202 |
|
203 |
with gr.Blocks() as demo:
|
204 |
+
gr.HTML("""
|
205 |
+
<h1><center>Image-to-Video</center></h1>
|
206 |
+
<big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
|
207 |
+
<br/>
|
208 |
|
209 |
+
<p>
|
210 |
+
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
|
211 |
+
No prompt or camera control is handled here.
|
212 |
+
To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
|
213 |
+
If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>.
|
214 |
+
</p>
|
215 |
+
""")
|
216 |
with gr.Row():
|
217 |
+
with gr.Column():
|
218 |
+
image = gr.Image(label="Upload your image", type="pil")
|
219 |
+
with gr.Accordion("Advanced options", open=False):
|
220 |
+
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
|
221 |
+
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
|
222 |
+
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
|
223 |
+
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
|
224 |
+
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
|
225 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
|
226 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
227 |
+
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
228 |
+
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
|
229 |
+
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
230 |
+
version = gr.Radio([["Auto", "auto"], ["🏃🏻♀️ SVD (trained on 14 f/s)", "svd"], ["🏃🏻♀️💨 SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True)
|
231 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
232 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
233 |
+
|
234 |
+
generate_btn = gr.Button(value="🚀 Animate", variant="primary")
|
235 |
+
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)
|
236 |
+
|
237 |
+
with gr.Column():
|
238 |
+
video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False)
|
239 |
+
gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False)
|
240 |
+
download_button = gr.DownloadButton(label="💾 Download video", visible=False)
|
241 |
+
information_msg = gr.HTML(visible=False)
|
242 |
+
gallery = gr.Gallery(label="Generated frames", visible=False)
|
243 |
|
244 |
+
generate_btn.click(fn=animate, inputs=[
|
245 |
+
image,
|
246 |
+
seed,
|
247 |
+
randomize_seed,
|
248 |
+
motion_bucket_id,
|
249 |
+
fps_id,
|
250 |
+
noise_aug_strength,
|
251 |
+
decoding_t,
|
252 |
+
video_format,
|
253 |
+
frame_format,
|
254 |
+
version,
|
255 |
+
width,
|
256 |
+
height,
|
257 |
+
motion_control,
|
258 |
+
num_inference_steps
|
259 |
+
], outputs=[
|
260 |
+
video_output,
|
261 |
+
gif_output,
|
262 |
+
download_button,
|
263 |
+
gallery,
|
264 |
+
seed,
|
265 |
+
information_msg,
|
266 |
+
reset_btn
|
267 |
+
], api_name="video")
|
268 |
+
|
269 |
+
reset_btn.click(fn = reset, inputs = [], outputs = [
|
270 |
+
image,
|
271 |
+
seed,
|
272 |
+
randomize_seed,
|
273 |
+
motion_bucket_id,
|
274 |
+
fps_id,
|
275 |
+
noise_aug_strength,
|
276 |
+
decoding_t,
|
277 |
+
video_format,
|
278 |
+
frame_format,
|
279 |
+
version,
|
280 |
+
width,
|
281 |
+
height,
|
282 |
+
motion_control,
|
283 |
+
num_inference_steps
|
284 |
+
], queue = False, show_progress = False)
|
285 |
+
|
286 |
gr.Examples(
|
287 |
examples=[
|
288 |
+
["images/01.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
289 |
+
["images/02.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
290 |
+
["images/03.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
|
291 |
],
|
292 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
|
293 |
+
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
|
294 |
+
fn=animate,
|
295 |
+
run_on_click=True,
|
296 |
+
cache_examples=False,
|
297 |
)
|
298 |
|
299 |
if __name__ == "__main__":
|
300 |
+
demo.launch(share=True, show_api=False)
|
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ transformers
|
|
4 |
accelerate
|
5 |
safetensors
|
6 |
opencv-python
|
7 |
-
uuid
|
|
|
|
4 |
accelerate
|
5 |
safetensors
|
6 |
opencv-python
|
7 |
+
uuid
|
8 |
+
torch
|