awacke1's picture
Update app.py
512292b verified
import streamlit as st
import anthropic
import openai
import base64
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
#import textract
import time
import zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee
from typing import Tuple, Optional
import pandas as pd
# ─────────────────────────────────────────────────────────
# 1. CORE CONFIGURATION & SETUP
# ─────────────────────────────────────────────────────────
st.set_page_config(
page_title="🚲TalkingAIResearcher🏆",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "🚲TalkingAIResearcher🏆"
}
)
load_dotenv()
# ▶ Available English voices for Edge TTS
EDGE_TTS_VOICES = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-US-JennyNeural",
"en-GB-SoniaNeural",
"en-GB-RyanNeural",
"en-AU-NatashaNeural",
"en-AU-WilliamNeural",
"en-CA-ClaraNeural",
"en-CA-LiamNeural"
]
# ▶ Initialize Session State
if 'marquee_settings' not in st.session_state:
st.session_state['marquee_settings'] = {
"background": "#1E1E1E",
"color": "#FFFFFF",
"font-size": "14px",
"animationDuration": "20s",
"width": "100%",
"lineHeight": "35px"
}
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
st.session_state['audio_format'] = 'mp3'
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'last_query' not in st.session_state:
st.session_state['last_query'] = ""
if 'marquee_content' not in st.session_state:
st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant"
# ▶ Additional keys for performance, caching, etc.
if 'audio_cache' not in st.session_state:
st.session_state['audio_cache'] = {}
if 'download_link_cache' not in st.session_state:
st.session_state['download_link_cache'] = {}
if 'operation_timings' not in st.session_state:
st.session_state['operation_timings'] = {}
if 'performance_metrics' not in st.session_state:
st.session_state['performance_metrics'] = defaultdict(list)
if 'enable_audio' not in st.session_state:
st.session_state['enable_audio'] = True # Turn TTS on/off
# ▶ API Keys
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai',"")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
# ▶ Helper constants
FILE_EMOJIS = {
"md": "📝",
"mp3": "🎵",
"wav": "🔊"
}
# ─────────────────────────────────────────────────────────
# 2. PERFORMANCE MONITORING & TIMING
# ─────────────────────────────────────────────────────────
class PerformanceTimer:
"""
⏱️ A context manager for timing operations with automatic logging.
Usage:
with PerformanceTimer("my_operation"):
# do something
The duration is stored into `st.session_state['operation_timings']`
and appended to the `performance_metrics` list.
"""
def __init__(self, operation_name: str):
self.operation_name = operation_name
self.start_time = None
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if not exc_type: # Only log if no exception occurred
duration = time.time() - self.start_time
st.session_state['operation_timings'][self.operation_name] = duration
st.session_state['performance_metrics'][self.operation_name].append(duration)
def log_performance_metrics():
"""
📈 Display performance metrics in the sidebar, including a timing breakdown
and a small bar chart of average times.
"""
st.sidebar.markdown("### ⏱️ Performance Metrics")
metrics = st.session_state['operation_timings']
if metrics:
total_time = sum(metrics.values())
st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s")
# Break down each operation time
for operation, duration in metrics.items():
percentage = (duration / total_time) * 100
st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)")
# Show timing history chart
history_data = []
for op, times in st.session_state['performance_metrics'].items():
if times: # Only if we have data
avg_time = sum(times) / len(times)
history_data.append({"Operation": op, "Avg Time (s)": avg_time})
if history_data:
st.sidebar.markdown("### 📊 Timing History (Avg)")
chart_data = pd.DataFrame(history_data)
st.sidebar.bar_chart(chart_data.set_index("Operation"))
# ─────────────────────────────────────────────────────────
# 3. HELPER FUNCTIONS (FILENAMES, LINKS, MARQUEE, ETC.)
# ─────────────────────────────────────────────────────────
def get_central_time():
"""🌎 Get current time in US Central timezone."""
central = pytz.timezone('US/Central')
return datetime.now(central)
def format_timestamp_prefix():
"""📅 Generate a timestamp prefix"""
ct = get_central_time()
#return ct.strftime("%m_%d_%y_%I_%M_%p")
return ct.strftime("%Y%m%d_%H%M%S")
def initialize_marquee_settings():
"""🌈 Initialize marquee defaults if needed."""
if 'marquee_settings' not in st.session_state:
st.session_state['marquee_settings'] = {
"background": "#1E1E1E",
"color": "#FFFFFF",
"font-size": "14px",
"animationDuration": "20s",
"width": "100%",
"lineHeight": "35px"
}
def get_marquee_settings():
"""🔧 Retrieve marquee settings from session."""
initialize_marquee_settings()
return st.session_state['marquee_settings']
def update_marquee_settings_ui():
"""🖌 Add color pickers & sliders for marquee config in the sidebar."""
with st.expander("🎯 Marquee Settings"):
st.markdown("### 🎯 Marquee Settings")
cols = st.columns(2)
with cols[0]:
bg_color = st.color_picker("🎨 Background",
st.session_state['marquee_settings']["background"],
key="bg_color_picker")
text_color = st.color_picker("✍️ Text",
st.session_state['marquee_settings']["color"],
key="text_color_picker")
with cols[1]:
font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider")
duration = st.slider("⏱️ Speed (secs)", 1, 20, 20, key="duration_slider")
st.session_state['marquee_settings'].update({
"background": bg_color,
"color": text_color,
"font-size": f"{font_size}px",
"animationDuration": f"{duration}s"
})
def display_marquee(text, settings, key_suffix=""):
"""
🎉 Show a marquee text with style from the marquee settings.
Automatically truncates text to ~280 chars to avoid overflow.
"""
truncated_text = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(
content=truncated_text,
**settings,
key=f"marquee_{key_suffix}"
)
st.write("")
def get_high_info_terms(text: str, top_n=10) -> list:
"""
📌 Extract top_n frequent words & bigrams (excluding common stopwords).
Useful for generating short descriptive keywords from Q/A content.
"""
stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'])
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
combined = words + bi_grams
filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2]
counter = Counter(filtered)
return [term for term, freq in counter.most_common(top_n)]
def clean_text_for_filename(text: str) -> str:
"""
🏷️ Remove special chars & short unhelpful words from text for safer filenames.
Returns a lowercased, underscore-joined token string.
"""
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library'])
filtered = [w for w in words if len(w) > 3 and w not in stop_short]
return '_'.join(filtered)[:200]
def generate_filename(prompt, response, file_type="md", max_length=200):
"""
📁 Create a shortened filename based on prompt+response content:
1) Extract top info terms,
2) Combine snippet from prompt+response,
3) Remove duplicates,
4) Truncate if needed.
"""
prefix = format_timestamp_prefix() + "_"
combined_text = (prompt + " " + response)[:200]
info_terms = get_high_info_terms(combined_text, top_n=5)
snippet = (prompt[:40] + " " + response[:40]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
# Remove duplicates
name_parts = info_terms + [snippet_cleaned]
seen = set()
unique_parts = []
for part in name_parts:
if part not in seen:
seen.add(part)
unique_parts.append(part)
full_name = '_'.join(unique_parts).strip('_')
leftover_chars = max_length - len(prefix) - len(file_type) - 1
if len(full_name) > leftover_chars:
full_name = full_name[:leftover_chars]
return f"{prefix}{full_name}.{file_type}"
def create_file(prompt, response, file_type="md"):
"""
📝 Create a text file from prompt + response with a sanitized filename.
Returns the created filename.
"""
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file, file_type="zip"):
"""
Convert a file to base64 and return an HTML link for download.
"""
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
if file_type == "zip":
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
elif file_type == "mp3":
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
elif file_type == "wav":
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>'
elif file_type == "md":
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
else:
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
def clean_for_speech(text: str) -> str:
"""Clean up text for TTS output."""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
"""Async TTS generation with edge-tts library."""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, file_type=file_format)
await communicate.save(out_fn)
return out_fn
def sync_edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
"""Async TTS generation with edge-tts library."""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, file_type=file_format)
#await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
"""Wrapper for the async TTS generate call."""
TTS = sync_edge_tts_generate_audio(text, voice, rate, pitch, file_format)
return TTS
def play_and_download_audio(file_path, file_type="mp3"):
"""Streamlit audio + a quick download link."""
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = get_download_link(file_path, file_type=file_type)
st.markdown(dl_link, unsafe_allow_html=True)
def save_qa_with_audio(question, answer, voice=None):
"""Save Q&A to markdown and also generate audio."""
if not voice:
voice = st.session_state['tts_voice']
combined_text = f"# Question\n{question}\n\n# Answer\n{answer}"
md_file = create_file(question, answer, "md")
audio_text = f"{question}\n\nAnswer: {answer}"
audio_file = speak_with_edge_tts(
audio_text,
voice=voice,
file_format=st.session_state['audio_format']
)
return md_file, audio_file
# ─────────────────────────────────────────────────────────
# 4. OPTIMIZED AUDIO GENERATION (ASYNC TTS + CACHING)
# ─────────────────────────────────────────────────────────
def clean_for_speech(text: str) -> str:
"""
🔉 Clean up text for TTS output with enhanced cleaning.
Removes markdown, code blocks, links, etc.
"""
with PerformanceTimer("text_cleaning"):
# Remove markdown headers
text = re.sub(r'#+ ', '', text)
# Remove link formats [text](url)
text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text)
# Remove emphasis markers (*, _, ~, `)
text = re.sub(r'[*_~`]', '', text)
# Remove code blocks
text = re.sub(r'```[\s\S]*?```', '', text)
text = re.sub(r'`[^`]*`', '', text)
# Remove excess whitespace
text = re.sub(r'\s+', ' ', text).replace("\n", " ")
# Remove hidden S tokens
text = text.replace("</s>", " ")
# Remove URLs
text = re.sub(r'https?://\S+', '', text)
text = re.sub(r'\(https?://[^\)]+\)', '', text)
text = text.strip()
return text
async def async_edge_tts_generate(
text: str,
voice: str,
rate: int = 0,
pitch: int = 0,
file_format: str = "mp3"
) -> Tuple[Optional[str], float]:
"""
🎶 Asynchronous TTS generation with caching and performance tracking.
Returns (filename, generation_time).
"""
with PerformanceTimer("tts_generation") as timer:
# ▶ Clean & validate text
text = clean_for_speech(text)
if not text.strip():
return None, 0
# ▶ Check cache (avoid regenerating the same TTS)
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']:
return st.session_state['audio_cache'][cache_key], 0
try:
# ▶ Generate audio
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
# ▶ Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}"
# ▶ Save audio file
await communicate.save(filename)
# ▶ Store in cache
st.session_state['audio_cache'][cache_key] = filename
# ▶ Return path + timing
return filename, time.time() - timer.start_time
except Exception as e:
st.error(f"❌ Error generating audio: {str(e)}")
return None, 0
async def async_save_qa_with_audio(
question: str,
answer: str,
voice: Optional[str] = None
) -> Tuple[str, Optional[str], float, float]:
"""
📝 Asynchronously save Q&A to markdown, then generate audio if enabled.
Returns (md_file, audio_file, md_time, audio_time).
"""
voice = voice or st.session_state['tts_voice']
with PerformanceTimer("qa_save") as timer:
# ▶ Save Q/A as markdown
md_start = time.time()
md_file = create_file(question, answer, "md")
md_time = time.time() - md_start
# ▶ Generate audio (if globally enabled)
audio_file = None
audio_time = 0
if st.session_state['enable_audio']:
audio_text = f"{question}\n\nAnswer: {answer}"
audio_file, audio_time = await async_edge_tts_generate(
audio_text,
voice=voice,
file_format=st.session_state['audio_format']
)
return md_file, audio_file, md_time, audio_time
def save_qa_with_audio(question, answer, voice=None):
"""Save Q&A to markdown and also generate audio."""
if not voice:
voice = st.session_state['tts_voice']
combined_text = f"# Question\n{question}\n\n# Answer\n{answer}"
md_file = create_file(question, answer, "md")
audio_text = f"{question}\n\nAnswer: {answer}"
audio_file = speak_with_edge_tts(
audio_text,
voice=voice,
file_format=st.session_state['audio_format']
)
return md_file, audio_file
def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str:
"""
⬇️ Create a download link for a file with caching & error handling.
"""
with PerformanceTimer("download_link_generation"):
cache_key = f"dl_{file_path}"
if cache_key in st.session_state['download_link_cache']:
return st.session_state['download_link_cache'][cache_key]
try:
with open(file_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
filename = os.path.basename(file_path)
if file_type == "mp3":
link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">🎵 Download {filename}</a>'
elif file_type == "wav":
link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">🔊 Download {filename}</a>'
elif file_type == "md":
link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">📝 Download {filename}</a>'
else:
link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">⬇️ Download {filename}</a>'
st.session_state['download_link_cache'][cache_key] = link
return link
except Exception as e:
st.error(f"❌ Error creating download link: {str(e)}")
return ""
# ─────────────────────────────────────────────────────────
# 5. RESEARCH / ARXIV FUNCTIONS
# ─────────────────────────────────────────────────────────
def parse_arxiv_refs(ref_text: str):
"""
📜 Given a multi-line markdown with Arxiv references,
parse them into a list of dicts: {date, title, url, authors, summary}.
"""
if not ref_text:
return []
results = []
current_paper = {}
lines = ref_text.split('\n')
for i, line in enumerate(lines):
if line.count('|') == 2:
# Found a new paper line
if current_paper:
results.append(current_paper)
if len(results) >= 20:
break
try:
header_parts = line.strip('* ').split('|')
date = header_parts[0].strip()
title = header_parts[1].strip()
url_match = re.search(r'(https://arxiv.org/\S+)', line)
url = url_match.group(1) if url_match else f"paper_{len(results)}"
current_paper = {
'date': date,
'title': title,
'url': url,
'authors': '',
'summary': '',
'full_audio': None,
'download_base64': '',
}
except Exception as e:
st.warning(f"⚠️ Error parsing paper header: {str(e)}")
current_paper = {}
continue
elif current_paper:
# If authors not set, fill it; otherwise, fill summary
if not current_paper['authors']:
current_paper['authors'] = line.strip('* ')
else:
if current_paper['summary']:
current_paper['summary'] += ' ' + line.strip()
else:
current_paper['summary'] = line.strip()
if current_paper:
results.append(current_paper)
return results[:20]
def create_paper_links_md(papers):
"""
🔗 Create a minimal .md content linking to each paper's Arxiv URL.
"""
lines = ["# Paper Links\n"]
for i, p in enumerate(papers, start=1):
lines.append(f"{i}. **{p['title']}** — [Arxiv]({p['url']})")
return "\n".join(lines)
async def create_paper_audio_files(papers, input_question):
"""
🎧 For each paper, generate TTS audio summary and store the path in `paper['full_audio']`.
Also creates a base64 download link in `paper['download_base64']`.
"""
for paper in papers:
try:
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
audio_text = clean_for_speech(audio_text)
file_format = st.session_state['audio_format']
audio_file, _ = await async_edge_tts_generate(
audio_text,
voice=st.session_state['tts_voice'],
file_format=file_format
)
paper['full_audio'] = audio_file
if audio_file:
# Convert to base64 link
ext = file_format
download_link = create_download_link_with_cache(audio_file, file_type=ext)
paper['download_base64'] = download_link
except Exception as e:
st.warning(f"⚠️ Error processing paper {paper['title']}: {str(e)}")
paper['full_audio'] = None
paper['download_base64'] = ''
def display_papers(papers, marquee_settings):
"""
📑 Display paper info in the main area with marquee + expanders + audio.
"""
st.write("## 🔎 Research Papers")
for i, paper in enumerate(papers, start=1):
marquee_text = f"📄 {paper['title']} | 👤 {paper['authors'][:120]} | 📝 {paper['summary'][:200]}"
display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}")
with st.expander(f"{i}. 📄 {paper['title']}", expanded=True):
st.markdown(f"**{paper['date']} | {paper['title']}** — [Arxiv Link]({paper['url']})")
st.markdown(f"*Authors:* {paper['authors']}")
st.markdown(paper['summary'])
if paper.get('full_audio'):
st.write("📚 **Paper Audio**")
st.audio(paper['full_audio'])
if paper['download_base64']:
st.markdown(paper['download_base64'], unsafe_allow_html=True)
def display_papers_in_sidebar(papers):
"""
🔎 Mirrors the paper listing in the sidebar with expanders, audio, etc.
"""
st.sidebar.title("🎶 Papers & Audio")
for i, paper in enumerate(papers, start=1):
with st.sidebar.expander(f"{i}. {paper['title']}"):
st.markdown(f"**Arxiv:** [Link]({paper['url']})")
if paper['full_audio']:
st.audio(paper['full_audio'])
if paper['download_base64']:
st.markdown(paper['download_base64'], unsafe_allow_html=True)
st.markdown(f"**Authors:** {paper['authors']}")
if paper['summary']:
st.markdown(f"**Summary:** {paper['summary'][:300]}...")
# ─────────────────────────────────────────────────────────
# 6. ZIP FUNCTION
# ─────────────────────────────────────────────────────────
def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
"""
📦 Zip up all relevant files, generating a short name from high-info terms.
Returns the zip filename if created, else None.
"""
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files + wav_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f, "r", encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3') or f.endswith('.wav'):
basename = os.path.splitext(os.path.basename(f))[0]
words = basename.replace('_', ' ')
all_content.append(words)
all_content.append(input_question)
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content, top_n=10)
timestamp = format_timestamp_prefix()
name_text = '-'.join(term for term in info_terms[:5])
short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip"
with zipfile.ZipFile(short_zip_name, 'w') as z:
for f in all_files:
z.write(f)
return short_zip_name
# ─────────────────────────────────────────────────────────
# 7. MAIN AI LOGIC: LOOKUP & TAB HANDLERS
# ─────────────────────────────────────────────────────────
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
"""Main routine that uses Anthropic (Claude) + Gradio ArXiv RAG pipeline."""
start = time.time()
ai_constitution = """
You are a medical and machine learning review board expert and streamlit python and html5 expert. You are tasked with creating a streamlit app.py and requirements.txt for a solution that answers the questions with a working app to demonstrate. You are to use the paper list below to answer the question thinking through step by step how to create a streamlit app.py and requirements.txt for the solution that answers the questions with a working app to demonstrate.
"""
# --- 1) Claude API
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": user_input}
])
st.write("Claude's reply 🧠:")
st.markdown(response.content[0].text)
# Save & produce audio
result = response.content[0].text
create_file(q, result)
md_file, audio_file = save_qa_with_audio(q, result)
st.subheader("📝 Main Response Audio")
play_and_download_audio(audio_file, st.session_state['audio_format'])
if useArxiv:
q = q + result # Feed Arxiv the question and Claude's answer for prompt fortification to get better answers and references
# --- 2) Arxiv RAG
#st.write("Arxiv's AI this Evening is Mixtral 8x7B...")
st.write('Running Arxiv RAG with Claude inputs.')
#st.code(q, language="python", line_numbers=True, wrap_lines=True)
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(
q,
10,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
#r2 = client.predict(
# q,
# "mistralai/Mixtral-8x7B-Instruct-v0.1",
# True,
# api_name="/ask_llm"
#)
#result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
result = f"🔎 {q}\n\n{refs}" # use original question q with result paired with paper references for best prompt fortification
md_file, audio_file = save_qa_with_audio(q, result)
st.subheader("📝 Main Response Audio")
play_and_download_audio(audio_file, st.session_state['audio_format'])
# --- 3) Parse + handle papers
papers = parse_arxiv_refs(refs)
if papers:
# Create minimal links page first
paper_links = create_paper_links_md(papers)
links_file = create_file(q, paper_links, "md")
st.markdown(paper_links)
# Then create audio for each paper
if useArxivAudio:
create_paper_audio_files(papers, input_question=q)
display_papers(papers, get_marquee_settings()) # scrolling marquee per paper and summary
display_papers_in_sidebar(papers) # sidebar entry per paper and summary
else:
st.warning("No papers found in the response.")
# --- 4) Claude API with arxiv list of papers to app.py
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q + '\n\n' + 'Use the reference papers below to answer the question by creating a python streamlit app.py and requirements.txt with python libraries for creating a single app.py application that answers the questions with working code to demonstrate.'+ '\n\n'
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": user_input}
])
r2 = response.content[0].text
st.write("Claude's reply 🧠:")
st.markdown(r2)
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return result
def perform_ai_lookup_old(
q,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=False
):
"""
🔮 Main routine that uses Anthropic (Claude) + optional Gradio ArXiv RAG pipeline.
Currently demonstrates calling Anthropic and returning the text.
"""
with PerformanceTimer("ai_lookup"):
start = time.time()
# ▶ Example call to Anthropic (Claude)
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q
# Here we do a minimal prompt, just to show the call
# (You can enhance your prompt engineering as needed)
response = client.completions.create(
model="claude-2",
max_tokens_to_sample=512,
prompt=f"{anthropic.HUMAN_PROMPT} {user_input}{anthropic.AI_PROMPT}"
)
result_text = response.completion.strip()
# ▶ Print and store
st.write("### Claude's reply 🧠:")
st.markdown(result_text)
# Save & produce audio
#create_file(q, result_text)
#md_file, audio_file = save_qa_with_audio(q, result_text)
#st.subheader("📝 Main Response Audio")
#play_and_download_audio(audio_file, st.session_state['audio_format'])
# ▶ We'll add to the chat history
st.session_state.chat_history.append({"user": q, "claude": result_text})
# ▶ Return final text
end = time.time()
st.write(f"**Elapsed:** {end - start:.2f}s")
return result_text
async def process_voice_input(text):
"""
🎤 When user sends a voice query, we run the AI lookup + Q/A with audio.
Then we store the resulting markdown & audio in session or disk.
"""
if not text:
return
st.subheader("🔍 Search Results")
# ▶ Call AI
result = perform_ai_lookup(
text,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True
)
# ▶ Save Q&A as Markdown + audio (async)
md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio(text, result)
st.subheader("📝 Generated Files")
st.write(f"**Markdown:** {md_file} (saved in {md_time:.2f}s)")
if audio_file:
st.write(f"**Audio:** {audio_file} (generated in {audio_time:.2f}s)")
st.audio(audio_file)
dl_link = create_download_link_with_cache(audio_file, file_type=st.session_state['audio_format'])
st.markdown(dl_link, unsafe_allow_html=True)
def display_voice_tab():
"""
🎙️ Display the voice input tab with TTS settings and real-time usage.
"""
# ▶ Voice Settings
with st.sidebar.expander("🎤 Voice Settings", expanded=False ):
st.markdown("### 🎤 Voice Settings")
caption_female = 'Top: 🌸 **Aria** – 🎶 **Jenny** – 🌺 **Sonia** – 🌌 **Natasha** – 🌷 **Clara**'
caption_male = 'Bottom: 🌟 **Guy** – 🛠️ **Ryan** – 🎻 **William** – 🌟 **Liam**'
# Optionally, replace with your own local image or comment out
try:
st.image('Group Picture - Voices.png', caption=caption_female + ' | ' + caption_male)
except:
st.write('.')
selected_voice = st.sidebar.selectbox(
"👄 Select TTS Voice:",
options=EDGE_TTS_VOICES,
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
)
with st.sidebar.expander("🎙️ Voice Character Agent Selector 🎭", expanded=False):
st.markdown("""
# 🎙️ Voice Character Agent Selector 🎭
*Female Voices*:
- 🌸 **Aria** – Elegant, creative storytelling
- 🎶 **Jenny** – Friendly, conversational
- 🌺 **Sonia** – Bold, confident
- 🌌 **Natasha** – Sophisticated, mysterious
- 🌷 **Clara** – Cheerful, empathetic
*Male Voices*:
- 🌟 **Guy** – Authoritative, versatile
- 🛠️ **Ryan** – Approachable, casual
- 🎻 **William** – Classic, scholarly
- 🌟 **Liam** – Energetic, engaging
""")
# ▶ Audio Format
st.markdown("### 🔊 Audio Format")
selected_format = st.radio(
"Choose Audio Format:",
options=["MP3", "WAV"],
index=0
)
# ▶ Update session state if changed
if selected_voice != st.session_state['tts_voice']:
st.session_state['tts_voice'] = selected_voice
st.rerun()
if selected_format.lower() != st.session_state['audio_format']:
st.session_state['audio_format'] = selected_format.lower()
st.rerun()
# ▶ Text Input
user_text = st.text_area("💬 Message:", height=100)
user_text = user_text.strip().replace('\n', ' ')
# ▶ Send Button
if st.button("📨 Send"):
# Run our process_voice_input as an async function
asyncio.run(process_voice_input(user_text))
# ▶ Chat History
st.subheader("📜 Chat History")
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Response:**", c["claude"])
# ─────────────────────────────────────────────────────────
# FILE HISTORY SIDEBAR
# ─────────────────────────────────────────────────────────
def display_file_history_in_sidebar():
"""
📂 Shows a history of local .md, .mp3, .wav files (newest first),
with quick icons and optional download links.
"""
st.sidebar.markdown("---")
st.sidebar.markdown("### 📂 File History")
# ▶ Gather all files
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
wav_files = glob.glob("*.wav")
all_files = md_files + mp3_files + wav_files
if not all_files:
st.sidebar.write("No files found.")
return
# ▶ Sort newest first
all_files = sorted(all_files, key=os.path.getmtime, reverse=True)
#for f in all_files:
# fname = os.path.basename(f)
# ext = os.path.splitext(fname)[1].lower().strip('.')
# emoji = FILE_EMOJIS.get(ext, '📦')
# time_str = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
#with st.sidebar.expander(f"{emoji} {fname}"):
# st.write(f"**Modified:** {time_str}")
# if ext == "md":
# with open(f, "r", encoding="utf-8") as file_in:
# snippet = file_in.read(200).replace("\n", " ")
# if len(snippet) == 200:
# snippet += "..."
# st.write(snippet)
# dl_link = create_download_link_with_cache(f, file_type="md")
# st.markdown(dl_link, unsafe_allow_html=True)
# elif ext in ["mp3","wav"]:
# st.audio(f)
# dl_link = create_download_link_with_cache(f, file_type=ext)
# st.markdown(dl_link, unsafe_allow_html=True)
# else:
# dl_link = create_download_link_with_cache(f)
# st.markdown(dl_link, unsafe_allow_html=True)
# Group files by their query prefix (timestamp_query)
grouped_files = {}
for f in all_files:
fname = os.path.basename(f)
prefix = '_'.join(fname.split('_')[:6]) # Get timestamp part
if prefix not in grouped_files:
grouped_files[prefix] = {'md': [], 'audio': [], 'loaded': False}
ext = os.path.splitext(fname)[1].lower()
if ext == '.md':
grouped_files[prefix]['md'].append(f)
elif ext in ['.mp3', '.wav']:
grouped_files[prefix]['audio'].append(f)
# Sort groups by timestamp (newest first)
sorted_groups = sorted(grouped_files.items(), key=lambda x: x[0], reverse=True)
# 🗑⬇️ Sidebar delete all and zip all download
col1, col4 = st.sidebar.columns(2)
with col1:
if st.button("🗑 Delete All"):
for f in all_files:
os.remove(f)
st.rerun()
st.session_state.should_rerun = True
with col4:
if st.button("⬇️ Zip All"):
zip_name = create_zip_of_files(md_files, mp3_files, wav_files,
st.session_state.get('last_query', ''))
if zip_name:
st.sidebar.markdown(get_download_link(zip_name, "zip"),
unsafe_allow_html=True)
# Display grouped files
for prefix, files in sorted_groups:
# Get a preview of content from first MD file
preview = ""
if files['md']:
with open(files['md'][0], "r", encoding="utf-8") as f:
preview = f.read(200).replace("\n", " ")
if len(preview) > 200:
preview += "..."
# Create unique key for this group
group_key = f"group_{prefix}"
if group_key not in st.session_state:
st.session_state[group_key] = False
# Display group expander
with st.sidebar.expander(f"📑 Query Group: {prefix}"):
st.write("**Preview:**")
st.write(preview)
# Load full content button
if st.button("📖 View Full Content", key=f"btn_{prefix}"):
st.session_state[group_key] = True
# Only show full content and audio if button was clicked
if st.session_state[group_key]:
# Display markdown files
for md_file in files['md']:
with open(md_file, "r", encoding="utf-8") as f:
content = f.read()
st.markdown("**Full Content:**")
st.markdown(content)
st.markdown(get_download_link(md_file, file_type="md"),
unsafe_allow_html=True)
# Display audio files
usePlaySidebar=False
if usePlaySidebar:
for audio_file in files['audio']:
ext = os.path.splitext(audio_file)[1].replace('.', '')
st.audio(audio_file)
st.markdown(get_download_link(audio_file, file_type=ext),
unsafe_allow_html=True)
# ─────────────────────────────────────────────────────────
# MAIN APP
# ─────────────────────────────────────────────────────────
def main():
# ▶ 1) Setup marquee UI in the sidebar
update_marquee_settings_ui()
marquee_settings = get_marquee_settings()
# ▶ 2) Display the marquee welcome
display_marquee(
st.session_state['marquee_content'],
{**marquee_settings, "font-size": "28px", "lineHeight": "50px"},
key_suffix="welcome"
)
# ▶ 3) Main action tabs and model use choices
tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"],
horizontal=True)
useArxiv = st.checkbox("Search Arxiv for Research Paper Answers", value=True)
useArxivAudio = st.checkbox("Generate Audio File for Research Paper Answers", value=False)
# ▶ 4) Show or hide custom component (optional example)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello from MyComponent")
if val:
val_stripped = val.replace('\\n', ' ')
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
run_option = st.selectbox("Model:", ["Arxiv", "Other (demo)"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("⚙ AutoRun", value=True)
with col2:
full_audio = st.checkbox("📚FullAudio", value=False)
input_changed = (val != st.session_state.old_val)
if autorun and input_changed:
st.session_state.old_val = val
st.session_state.last_query = edited_input
perform_ai_lookup(edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
else:
if st.button("▶ Run"):
st.session_state.old_val = val
st.session_state.last_query = edited_input
perform_ai_lookup(edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
# ─────────────────────────────────────────────────────────
# TAB: ArXiv
# ─────────────────────────────────────────────────────────
if tab_main == "🔍 ArXiv":
st.subheader("🔍 Query ArXiv")
q = st.text_input("🔍 Query:", key="arxiv_query")
st.markdown("### 🎛 Options")
vocal_summary = st.checkbox("🎙ShortAudio", value=True, key="option_vocal_summary")
extended_refs = st.checkbox("📜LongRefs", value=False, key="option_extended_refs")
titles_summary = st.checkbox("🔖TitlesOnly", value=True, key="option_titles_summary")
full_audio = st.checkbox("📚FullAudio", value=False, key="option_full_audio")
full_transcript = st.checkbox("🧾FullTranscript", value=False, key="option_full_transcript")
if q and st.button("🔍Run"):
st.session_state.last_query = q
result = perform_ai_lookup(q,
vocal_summary=vocal_summary,
extended_refs=extended_refs,
titles_summary=titles_summary,
full_audio=full_audio)
if full_transcript:
create_file(q, result, "md")
# ─────────────────────────────────────────────────────────
# TAB: Voice
# ─────────────────────────────────────────────────────────
elif tab_main == "🎤 Voice":
display_voice_tab()
# ─────────────────────────────────────────────────────────
# TAB: Media
# ─────────────────────────────────────────────────────────
elif tab_main == "📸 Media":
st.header("📸 Media Gallery")
tabs = st.tabs(["🎵 Audio", "🖼 Images", "🎥 Video"])
# ▶ AUDIO sub-tab
with tabs[0]:
st.subheader("🎵 Audio Files")
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
if audio_files:
for a in audio_files:
with st.expander(os.path.basename(a)):
st.audio(a)
ext = os.path.splitext(a)[1].replace('.', '')
dl_link = create_download_link_with_cache(a, file_type=ext)
st.markdown(dl_link, unsafe_allow_html=True)
else:
st.write("No audio files found.")
# ▶ IMAGES sub-tab
with tabs[1]:
st.subheader("🖼 Image Files")
imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
if imgs:
c = st.slider("Cols", 1, 5, 3, key="cols_images")
cols = st.columns(c)
for i, f in enumerate(imgs):
with cols[i % c]:
st.image(Image.open(f), use_container_width=True)
else:
st.write("No images found.")
# ▶ VIDEO sub-tab
with tabs[2]:
st.subheader("🎥 Video Files")
vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi")
if vids:
for v in vids:
with st.expander(os.path.basename(v)):
st.video(v)
else:
st.write("No videos found.")
# ─────────────────────────────────────────────────────────
# TAB: Editor
# ─────────────────────────────────────────────────────────
elif tab_main == "📝 Editor":
st.write("### 📝 File Editor (Minimal Demo)")
st.write("Select or create a file to edit. More advanced features can be added as needed.")
# ─────────────────────────────────────────────────────────
# SIDEBAR: FILE HISTORY + PERFORMANCE METRICS
# ─────────────────────────────────────────────────────────
display_file_history_in_sidebar()
log_performance_metrics()
# ▶ Some light CSS styling
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button { margin-right: 0.5rem; }
</style>
""", unsafe_allow_html=True)
# ▶ Rerun if needed
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
# ─────────────────────────────────────────────────────────
# 8. RUN APP
# ─────────────────────────────────────────────────────────
if __name__ == "__main__":
main()