Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 52,713 Bytes
4352211 9d38a5a 4352211 9d38a5a 4352211 9d38a5a 4352211 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 |
import streamlit as st
import anthropic
import openai
import base64
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
#import textract
import time
import zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee
from typing import Tuple, Optional
import pandas as pd
# Patch the asyncio event loop to allow nested use of asyncio.run()
import nest_asyncio
nest_asyncio.apply()
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1. CORE CONFIGURATION & SETUP
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
st.set_page_config(
page_title="๐ฒTalkingAIResearcher๐",
page_icon="๐ฒ๐",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "๐ฒTalkingAIResearcher๐"
}
)
load_dotenv()
# โถ Available English voices for Edge TTS
EDGE_TTS_VOICES = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-US-JennyNeural",
"en-GB-SoniaNeural",
"en-GB-RyanNeural",
"en-AU-NatashaNeural",
"en-AU-WilliamNeural",
"en-CA-ClaraNeural",
"en-CA-LiamNeural"
]
# โถ Initialize Session State
if 'marquee_settings' not in st.session_state:
st.session_state['marquee_settings'] = {
"background": "#1E1E1E",
"color": "#FFFFFF",
"font-size": "14px",
"animationDuration": "20s",
"width": "100%",
"lineHeight": "35px"
}
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
st.session_state['audio_format'] = 'mp3'
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'last_query' not in st.session_state:
st.session_state['last_query'] = ""
if 'marquee_content' not in st.session_state:
st.session_state['marquee_content'] = "๐ Welcome to TalkingAIResearcher | ๐ค Your Research Assistant"
# โถ Additional keys for performance, caching, etc.
if 'audio_cache' not in st.session_state:
st.session_state['audio_cache'] = {}
if 'download_link_cache' not in st.session_state:
st.session_state['download_link_cache'] = {}
if 'operation_timings' not in st.session_state:
st.session_state['operation_timings'] = {}
if 'performance_metrics' not in st.session_state:
st.session_state['performance_metrics'] = defaultdict(list)
if 'enable_audio' not in st.session_state:
st.session_state['enable_audio'] = True # Turn TTS on/off
# โถ API Keys
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai',"")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
# โถ Helper constants
FILE_EMOJIS = {
"md": "๐",
"mp3": "๐ต",
"wav": "๐"
}
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 2. PERFORMANCE MONITORING & TIMING
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
class PerformanceTimer:
"""
โฑ๏ธ A context manager for timing operations with automatic logging.
Usage:
with PerformanceTimer("my_operation"):
# do something
The duration is stored into `st.session_state['operation_timings']`
and appended to the `performance_metrics` list.
"""
def __init__(self, operation_name: str):
self.operation_name = operation_name
self.start_time = None
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if not exc_type: # Only log if no exception occurred
duration = time.time() - self.start_time
st.session_state['operation_timings'][self.operation_name] = duration
st.session_state['performance_metrics'][self.operation_name].append(duration)
def log_performance_metrics():
"""
๐ Display performance metrics in the sidebar, including a timing breakdown
and a small bar chart of average times.
"""
st.sidebar.markdown("### โฑ๏ธ Performance Metrics")
metrics = st.session_state['operation_timings']
if metrics:
total_time = sum(metrics.values())
st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s")
# Break down each operation time
for operation, duration in metrics.items():
percentage = (duration / total_time) * 100
st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)")
# Show timing history chart
history_data = []
for op, times in st.session_state['performance_metrics'].items():
if times: # Only if we have data
avg_time = sum(times) / len(times)
history_data.append({"Operation": op, "Avg Time (s)": avg_time})
if history_data:
st.sidebar.markdown("### ๐ Timing History (Avg)")
chart_data = pd.DataFrame(history_data)
st.sidebar.bar_chart(chart_data.set_index("Operation"))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 3. HELPER FUNCTIONS (FILENAMES, LINKS, MARQUEE, ETC.)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def get_central_time():
"""๐ Get current time in US Central timezone."""
central = pytz.timezone('US/Central')
return datetime.now(central)
def format_timestamp_prefix():
"""๐
Generate a timestamp prefix"""
ct = get_central_time()
return ct.strftime("%Y%m%d_%H%M%S")
def initialize_marquee_settings():
"""๐ Initialize marquee defaults if needed."""
if 'marquee_settings' not in st.session_state:
st.session_state['marquee_settings'] = {
"background": "#1E1E1E",
"color": "#FFFFFF",
"font-size": "14px",
"animationDuration": "20s",
"width": "100%",
"lineHeight": "35px"
}
def get_marquee_settings():
"""๐ง Retrieve marquee settings from session."""
initialize_marquee_settings()
return st.session_state['marquee_settings']
def update_marquee_settings_ui():
"""๐ Add color pickers & sliders for marquee config in the sidebar."""
st.sidebar.markdown("### ๐ฏ Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
bg_color = st.color_picker("๐จ Background",
st.session_state['marquee_settings']["background"],
key="bg_color_picker")
text_color = st.color_picker("โ๏ธ Text",
st.session_state['marquee_settings']["color"],
key="text_color_picker")
with cols[1]:
font_size = st.slider("๐ Size", 10, 24, 14, key="font_size_slider")
duration = st.slider("โฑ๏ธ Speed (secs)", 1, 20, 20, key="duration_slider")
st.session_state['marquee_settings'].update({
"background": bg_color,
"color": text_color,
"font-size": f"{font_size}px",
"animationDuration": f"{duration}s"
})
def display_marquee(text, settings, key_suffix=""):
"""
๐ Show a marquee text with style from the marquee settings.
Automatically truncates text to ~280 chars to avoid overflow.
"""
truncated_text = text[:280] + "..." if len(text) > 280 else text
streamlit_marquee(
content=truncated_text,
**settings,
key=f"marquee_{key_suffix}"
)
st.write("")
def get_high_info_terms(text: str, top_n=10) -> list:
"""
๐ Extract top_n frequent words & bigrams (excluding common stopwords).
Useful for generating short descriptive keywords from Q/A content.
"""
stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'])
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
combined = words + bi_grams
filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2]
counter = Counter(filtered)
return [term for term, freq in counter.most_common(top_n)]
def clean_text_for_filename(text: str) -> str:
"""
๐ท๏ธ Remove special chars & short unhelpful words from text for safer filenames.
Returns a lowercased, underscore-joined token string.
"""
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library'])
filtered = [w for w in words if len(w) > 3 and w not in stop_short]
return '_'.join(filtered)[:200]
def generate_filename(prompt, response, file_type="md", max_length=200):
"""
๐ Create a shortened filename based on prompt+response content:
1) Extract top info terms,
2) Combine snippet from prompt+response,
3) Remove duplicates,
4) Append word counts and estimated duration tokens,
5) Truncate if needed.
"""
prefix = format_timestamp_prefix() + "_"
combined_text = (prompt + " " + response)[:200]
info_terms = get_high_info_terms(combined_text, top_n=5)
snippet = (prompt[:40] + " " + response[:40]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
# Remove duplicates
name_parts = info_terms + [snippet_cleaned]
seen = set()
unique_parts = []
for part in name_parts:
if part not in seen:
seen.add(part)
unique_parts.append(part)
# NEW: Compute word counts for title (prompt) and summary (response) and estimated duration
wct = len(prompt.split())
sw = len(response.split())
# Estimated duration (seconds) assuming a reading speed of 2.5 words per second
estimated_duration = round((wct + sw) / 2.5)
base_name = '_'.join(unique_parts).strip('_')
# NEW: Append new tokens for word counts and duration
extra_tokens = f"_wct{wct}_sw{sw}_dur{estimated_duration}"
leftover_chars = max_length - len(prefix) - len(file_type) - 1
if len(base_name) + len(extra_tokens) > leftover_chars:
base_name = base_name[:leftover_chars - len(extra_tokens)]
full_name = base_name + extra_tokens
return f"{prefix}{full_name}.{file_type}"
def create_file(prompt, response, file_type="md"):
"""
๐ Create a text file from prompt + response with a sanitized filename.
Returns the created filename.
"""
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file, file_type="zip"):
"""
Convert a file to base64 and return an HTML link for download.
"""
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
if file_type == "zip":
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">๐ Download {os.path.basename(file)}</a>'
elif file_type == "mp3":
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">๐ต Download {os.path.basename(file)}</a>'
elif file_type == "wav":
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">๐ Download {os.path.basename(file)}</a>'
elif file_type == "md":
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">๐ Download {os.path.basename(file)}</a>'
else:
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
def clean_for_speech(text: str) -> str:
"""Clean up text for TTS output."""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5 MINUTE RESEARCH PAPER FEATURE (NEW CODE) ๐๐
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def generate_pdf_link(url: str) -> str:
"""
๐ Generate PDF link from abstract URL by replacing 'abs' with 'pdf' and appending .pdf if needed.
"""
if "abs" in url:
pdf_url = url.replace("abs", "pdf")
if not pdf_url.endswith(".pdf"):
pdf_url += ".pdf"
return pdf_url
return url
def generate_5min_feature_markdown(paper: dict) -> str:
"""
โจ Generate detailed markdown for a paper including:
- Word count for title and summary
- High info words list (up to 15 terms)
- PDF link (derived from abstract URL)
- A pseudo ROUGE score
- A mermaid graph code block for the 15 concepts
"""
title = paper.get('title', '')
summary = paper.get('summary', '')
authors = paper.get('authors', '')
date = paper.get('date', '')
url = paper.get('url', '')
pdf_link = generate_pdf_link(url)
title_wc = len(title.split())
summary_wc = len(summary.split())
high_info_terms = get_high_info_terms(summary, top_n=15)
terms_str = ", ".join(high_info_terms)
# Compute a pseudo ROUGE score as percentage of high info terms to summary words
rouge_score = round((len(high_info_terms) / max(len(summary.split()), 1)) * 100, 2)
# Generate mermaid graph code block connecting terms sequentially
mermaid_code = "```mermaid\nflowchart TD\n"
for i in range(len(high_info_terms) - 1):
mermaid_code += f' T{i+1}["{high_info_terms[i]}"] --> T{i+2}["{high_info_terms[i+1]}"]\n'
mermaid_code += "```"
md = f"""
## ๐ {title}
**Authors:** {authors}
**Date:** {date}
**Word Count (Title):** {title_wc} | **Word Count (Summary):** {summary_wc}
**Links:** [Abstract]({url}) | [PDF]({pdf_link})
**High Info Terms:** {terms_str}
**ROUGE Score:** {rouge_score}%
### ๐ค TTF Read Aloud
- **Title:** {title}
- **Key Terms:** {terms_str}
- **ROUGE:** {rouge_score}%
#### Mermaid Graph of Key Concepts
{mermaid_code}
---
"""
return md
def create_detailed_paper_md(papers: list) -> str:
"""
๐ Create a detailed markdown string for all papers including 5 minute research paper features.
"""
md_parts = ["# Detailed Research Paper Summary\n"]
for idx, paper in enumerate(papers, start=1):
md_parts.append(generate_5min_feature_markdown(paper))
return "\n".join(md_parts)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 4. OPTIMIZED AUDIO GENERATION (ASYNC TTS + CACHING)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def clean_for_speech(text: str) -> str:
"""
๐ Clean up text for TTS output with enhanced cleaning.
Removes markdown, code blocks, links, etc.
"""
with PerformanceTimer("text_cleaning"):
# Remove markdown headers
text = re.sub(r'#+ ', '', text)
# Remove link formats [text](url)
text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text)
# Remove emphasis markers (*, _, ~, `)
text = re.sub(r'[*_~`]', '', text)
# Remove code blocks
text = re.sub(r'```[\s\S]*?```', '', text)
text = re.sub(r'`[^`]*`', '', text)
# Remove excess whitespace
text = re.sub(r'\s+', ' ', text).replace("\n", " ")
# Remove hidden S tokens
text = text.replace("</s>", " ")
# Remove URLs
text = re.sub(r'https?://\S+', '', text)
text = re.sub(r'\(https?://[^\)]+\)', '', text)
text = text.strip()
return text
async def async_edge_tts_generate(
text: str,
voice: str,
rate: int = 0,
pitch: int = 0,
file_format: str = "mp3"
) -> Tuple[Optional[str], float]:
"""
๐ถ Asynchronous TTS generation with caching and performance tracking.
Returns (filename, generation_time).
"""
with PerformanceTimer("tts_generation") as timer:
# โถ Clean & validate text
text = clean_for_speech(text)
if not text.strip():
return None, 0
# โถ Check cache (avoid regenerating the same TTS)
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}"
if cache_key in st.session_state['audio_cache']:
return st.session_state['audio_cache'][cache_key], 0
try:
# โถ Generate audio
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
# โถ Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}"
# โถ Save audio file
await communicate.save(filename)
# โถ Store in cache
st.session_state['audio_cache'][cache_key] = filename
# โถ Return path + timing
return filename, time.time() - timer.start_time
except Exception as e:
st.error(f"โ Error generating audio: {str(e)}")
return None, 0
# NEW: Define speak_with_edge_tts using our async function and return only the filename
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
"""Wrapper for the async TTS generate call. Returns only the filename."""
result = asyncio.run(async_edge_tts_generate(text, voice, rate, pitch, file_format))
if isinstance(result, tuple):
return result[0]
return result
async def async_save_qa_with_audio(
question: str,
answer: str,
voice: Optional[str] = None
) -> Tuple[str, Optional[str], float, float]:
"""
๐ Asynchronously save Q&A to markdown, then generate audio if enabled.
Returns (md_file, audio_file, md_time, audio_time).
"""
voice = voice or st.session_state['tts_voice']
with PerformanceTimer("qa_save") as timer:
# โถ Save Q/A as markdown
md_start = time.time()
md_file = create_file(question, answer, "md")
md_time = time.time() - md_start
# โถ Generate audio (if globally enabled)
audio_file = None
audio_time = 0
if st.session_state['enable_audio']:
audio_text = f"{question}\n\nAnswer: {answer}"
audio_file, audio_time = await async_edge_tts_generate(
audio_text,
voice=voice,
file_format=st.session_state['audio_format']
)
return md_file, audio_file, md_time, audio_time
def save_qa_with_audio(question, answer, voice=None):
"""Save Q&A to markdown and also generate audio."""
if not voice:
voice = st.session_state['tts_voice']
combined_text = f"# Question\n{question}\n\n# Answer\n{answer}"
md_file = create_file(question, answer, "md")
audio_text = f"{question}\n\nAnswer: {answer}"
audio_file = speak_with_edge_tts(
audio_text,
voice=voice,
file_format=st.session_state['audio_format']
)
return md_file, audio_file
def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str:
"""
โฌ๏ธ Create a download link for a file with caching & error handling.
"""
with PerformanceTimer("download_link_generation"):
cache_key = f"dl_{file_path}"
if cache_key in st.session_state['download_link_cache']:
return st.session_state['download_link_cache'][cache_key]
try:
with open(file_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
filename = os.path.basename(file_path)
if file_type == "mp3":
link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">๐ต Download {filename}</a>'
elif file_type == "wav":
link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
elif file_type == "md":
link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">๐ Download {filename}</a>'
else:
link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">โฌ๏ธ Download {filename}</a>'
st.session_state['download_link_cache'][cache_key] = link
return link
except Exception as e:
st.error(f"โ Error creating download link: {str(e)}")
return ""
# NEW: Define play_and_download_audio to play audio and provide a download link.
def play_and_download_audio(file_path, file_type="mp3"):
"""Streamlit audio + a quick download link."""
if file_path and isinstance(file_path, str) and os.path.exists(file_path):
st.audio(file_path)
dl_link = get_download_link(file_path, file_type=file_type)
st.markdown(dl_link, unsafe_allow_html=True)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 5. RESEARCH / ARXIV FUNCTIONS
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def parse_arxiv_refs(ref_text: str):
"""
๐ Given a multi-line markdown with Arxiv references,
parse them into a list of dicts: {date, title, url, authors, summary}.
"""
if not ref_text:
return []
results = []
current_paper = {}
lines = ref_text.split('\n')
for i, line in enumerate(lines):
if line.count('|') == 2:
# Found a new paper line
if current_paper:
results.append(current_paper)
if len(results) >= 20:
break
try:
header_parts = line.strip('* ').split('|')
date = header_parts[0].strip()
title = header_parts[1].strip()
url_match = re.search(r'(https://arxiv.org/\S+)', line)
url = url_match.group(1) if url_match else f"paper_{len(results)}"
current_paper = {
'date': date,
'title': title,
'url': url,
'authors': '',
'summary': '',
'full_audio': None,
'download_base64': '',
}
except Exception as e:
st.warning(f"โ ๏ธ Error parsing paper header: {str(e)}")
current_paper = {}
continue
elif current_paper:
# If authors not set, fill it; otherwise, fill summary
if not current_paper['authors']:
current_paper['authors'] = line.strip('* ')
else:
if current_paper['summary']:
current_paper['summary'] += ' ' + line.strip()
else:
current_paper['summary'] = line.strip()
if current_paper:
results.append(current_paper)
return results[:20]
def create_paper_links_md(papers):
"""
๐ Create a minimal .md content linking to each paper's Arxiv URL.
"""
lines = ["# Paper Links\n"]
for i, p in enumerate(papers, start=1):
lines.append(f"{i}. **{p['title']}** โ [Arxiv Link]({p['url']})")
return "\n".join(lines)
async def create_paper_audio_files(papers, input_question):
"""
๐ง For each paper, generate TTS audio summary and store the path in `paper['full_audio']`.
Also creates a base64 download link in `paper['download_base64']`.
"""
for paper in papers:
try:
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
audio_text = clean_for_speech(audio_text)
file_format = st.session_state['audio_format']
audio_file, _ = await async_edge_tts_generate(
audio_text,
voice=st.session_state['tts_voice'],
file_format=file_format
)
paper['full_audio'] = audio_file
if audio_file:
# Convert to base64 link
ext = file_format
download_link = create_download_link_with_cache(audio_file, file_type=ext)
paper['download_base64'] = download_link
except Exception as e:
st.warning(f"โ ๏ธ Error processing paper {paper['title']}: {str(e)}")
paper['full_audio'] = None
paper['download_base64'] = ''
def display_papers(papers, marquee_settings):
"""
๐ Display paper info in the main area with marquee + expanders + audio.
"""
st.write("## ๐ Research Papers")
for i, paper in enumerate(papers, start=1):
marquee_text = f"๐ {paper['title']} | ๐ค {paper['authors'][:120]} | ๐ {paper['summary'][:200]}"
display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}")
with st.expander(f"{i}. ๐ {paper['title']}", expanded=True):
st.markdown(f"**{paper['date']} | {paper['title']}** โ [Arxiv Link]({paper['url']})")
# NEW: Add PDF link next to abstract link
pdf_link = generate_pdf_link(paper['url'])
st.markdown(f"**PDF Link:** [PDF]({pdf_link})")
st.markdown(f"*Authors:* {paper['authors']}")
st.markdown(paper['summary'])
# NEW: Append detailed 5min feature markdown for this paper
st.markdown(generate_5min_feature_markdown(paper))
if paper.get('full_audio'):
st.write("๐ **Paper Audio**")
st.audio(paper['full_audio'])
if paper['download_base64']:
st.markdown(paper['download_base64'], unsafe_allow_html=True)
def display_papers_in_sidebar(papers):
"""
๐ Mirrors the paper listing in the sidebar with expanders, audio, etc.
"""
st.sidebar.title("๐ถ Papers & Audio")
for i, paper in enumerate(papers, start=1):
with st.sidebar.expander(f"{i}. {paper['title']}"):
st.markdown(f"**Arxiv:** [Link]({paper['url']})")
# NEW: Add PDF link in sidebar as well
pdf_link = generate_pdf_link(paper['url'])
st.markdown(f"**PDF:** [PDF]({pdf_link})")
if paper['full_audio']:
st.audio(paper['full_audio'])
if paper['download_base64']:
st.markdown(paper['download_base64'], unsafe_allow_html=True)
st.markdown(f"**Authors:** {paper['authors']}")
if paper['summary']:
st.markdown(f"**Summary:** {paper['summary'][:300]}...")
# NEW: Show 5min feature summary in sidebar expander
st.markdown(generate_5min_feature_markdown(paper))
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 6. ZIP FUNCTION
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
"""
๐ฆ Zip up all relevant files, generating a short name from high-info terms.
Returns the zip filename if created, else None.
"""
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files + wav_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f, "r", encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3') or f.endswith('.wav'):
basename = os.path.splitext(os.path.basename(f))[0]
words = basename.replace('_', ' ')
all_content.append(words)
all_content.append(input_question)
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content, top_n=10)
timestamp = format_timestamp_prefix()
name_text = '-'.join(term for term in info_terms[:5])
short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip"
with zipfile.ZipFile(short_zip_name, 'w') as z:
for f in all_files:
z.write(f)
return short_zip_name
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 7. MAIN AI LOGIC: LOOKUP & TAB HANDLERS
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=False, useArxiv=True, useArxivAudio=False):
"""Main routine that uses Anthropic (Claude) + Gradio ArXiv RAG pipeline."""
start = time.time()
ai_constitution = """
You are a medical and machine learning review board expert and streamlit python and html5 expert. You are tasked with creating a streamlit app.py and requirements.txt for a solution that answers the questions with a working app to demonstrate. You are to use the paper list below to answer the question thinking through step by step how to create a streamlit app.py and requirements.txt for the solution that answers the questions with a working app to demonstrate.
"""
# --- 1) Claude API
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": user_input}
])
st.write("Claude's reply ๐ง :")
st.markdown(response.content[0].text)
# Save & produce audio
result = response.content[0].text
create_file(q, result)
md_file, audio_file = save_qa_with_audio(q, result)
st.subheader("๐ Main Response Audio")
play_and_download_audio(audio_file, st.session_state['audio_format'])
if useArxiv:
q = q + result # Feed Arxiv the question and Claude's answer for prompt fortification to get better answers and references
# --- 2) Arxiv RAG
st.write('Running Arxiv RAG with Claude inputs.')
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(
q,
10,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
result = f"๐ {q}\n\n{refs}" # use original question q with result paired with paper references for best prompt fortification
md_file, audio_file = save_qa_with_audio(q, result)
st.subheader("๐ Main Response Audio")
play_and_download_audio(audio_file, st.session_state['audio_format'])
# --- 3) Parse + handle papers
papers = parse_arxiv_refs(refs)
if papers:
# Create minimal links page first
paper_links = create_paper_links_md(papers)
links_file = create_file(q, paper_links, "md")
st.markdown(paper_links)
# NEW: Create detailed markdown with 5 minute research paper features
detailed_md = create_detailed_paper_md(papers)
detailed_file = create_file(q, detailed_md, "md")
st.markdown(detailed_md)
# Then create audio for each paper if desired
if useArxivAudio:
asyncio.run(create_paper_audio_files(papers, input_question=q))
display_papers(papers, get_marquee_settings()) # scrolling marquee per paper and summary
display_papers_in_sidebar(papers) # sidebar entry per paper and summary
else:
st.warning("No papers found in the response.")
# --- 4) Claude API with arxiv list of papers to app.py
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q + '\n\n' + 'Use the reference papers below to answer the question by creating a python streamlit app.py and requirements.txt with python libraries for creating a single app.py application that answers the questions with working code to demonstrate.'+ '\n\n'
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": user_input}
])
r2 = response.content[0].text
st.write("Claude's reply ๐ง :")
st.markdown(r2)
elapsed = time.time() - start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return result
def perform_ai_lookup_old(
q,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=False
):
"""
๐ฎ Main routine that uses Anthropic (Claude) + optional Gradio ArXiv RAG pipeline.
Currently demonstrates calling Anthropic and returning the text.
"""
with PerformanceTimer("ai_lookup"):
start = time.time()
# โถ Example call to Anthropic (Claude)
client = anthropic.Anthropic(api_key=anthropic_key)
user_input = q
# Here we do a minimal prompt, just to show the call
# (You can enhance your prompt engineering as needed)
response = client.completions.create(
model="claude-2",
max_tokens_to_sample=512,
prompt=f"{anthropic.HUMAN_PROMPT} {user_input}{anthropic.AI_PROMPT}"
)
result_text = response.completion.strip()
# โถ Print and store
st.write("### Claude's reply ๐ง :")
st.markdown(result_text)
# โถ We'll add to the chat history
st.session_state.chat_history.append({"user": q, "claude": result_text})
# โถ Return final text
end = time.time()
st.write(f"**Elapsed:** {end - start:.2f}s")
return result_text
async def process_voice_input(text):
"""
๐ค When user sends a voice query, we run the AI lookup + Q/A with audio.
Then we store the resulting markdown & audio in session or disk.
"""
if not text:
return
st.subheader("๐ Search Results")
# โถ Call AI
result = perform_ai_lookup(
text,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=True
)
# โถ Save Q&A as Markdown + audio (async)
md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio(text, result)
st.subheader("๐ Generated Files")
st.write(f"**Markdown:** {md_file} (saved in {md_time:.2f}s)")
if audio_file:
st.write(f"**Audio:** {audio_file} (generated in {audio_time:.2f}s)")
st.audio(audio_file)
dl_link = create_download_link_with_cache(audio_file, file_type=st.session_state['audio_format'])
st.markdown(dl_link, unsafe_allow_html=True)
def display_voice_tab():
"""
๐๏ธ Display the voice input tab with TTS settings and real-time usage.
"""
# โถ Voice Settings
st.sidebar.markdown("### ๐ค Voice Settings")
caption_female = 'Top: ๐ธ **Aria** โ ๐ถ **Jenny** โ ๐บ **Sonia** โ ๐ **Natasha** โ ๐ท **Clara**'
caption_male = 'Bottom: ๐ **Guy** โ ๐ ๏ธ **Ryan** โ ๐ป **William** โ ๐ **Liam**'
# Optionally, replace with your own local image or comment out
try:
st.sidebar.image('Group Picture - Voices.png', caption=caption_female + ' | ' + caption_male)
except:
st.sidebar.write('.')
selected_voice = st.sidebar.selectbox(
"๐ Select TTS Voice:",
options=EDGE_TTS_VOICES,
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
)
st.sidebar.markdown("""
# ๐๏ธ Voice Character Agent Selector ๐ญ
*Female Voices*:
- ๐ธ **Aria** โ Elegant, creative storytelling
- ๐ถ **Jenny** โ Friendly, conversational
- ๐บ **Sonia** โ Bold, confident
- ๐ **Natasha** โ Sophisticated, mysterious
- ๐ท **Clara** โ Cheerful, empathetic
*Male Voices*:
- ๐ **Guy** โ Authoritative, versatile
- ๐ ๏ธ **Ryan** โ Approachable, casual
- ๐ป **William** โ Classic, scholarly
- ๐ **Liam** โ Energetic, engaging
""")
# โถ Audio Format
st.markdown("### ๐ Audio Format")
selected_format = st.radio(
"Choose Audio Format:",
options=["MP3", "WAV"],
index=0
)
# โถ Update session state if changed
if selected_voice != st.session_state['tts_voice']:
st.session_state['tts_voice'] = selected_voice
st.rerun()
if selected_format.lower() != st.session_state['audio_format']:
st.session_state['audio_format'] = selected_format.lower()
st.rerun()
# โถ Text Input
user_text = st.text_area("๐ฌ Message:", height=100)
user_text = user_text.strip().replace('\n', ' ')
# โถ Send Button
if st.button("๐จ Send"):
# Run our process_voice_input as an async function
asyncio.run(process_voice_input(user_text))
# โถ Chat History
st.subheader("๐ Chat History")
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Response:**", c["claude"])
def display_file_history_in_sidebar():
"""
๐ Shows a history of local .md, .mp3, .wav files (newest first),
with quick icons and optional download links.
"""
st.sidebar.markdown("---")
st.sidebar.markdown("### ๐ File History")
# โถ Gather all files
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
wav_files = glob.glob("*.wav")
all_files = md_files + mp3_files + wav_files
if not all_files:
st.sidebar.write("No files found.")
return
# โถ Sort newest first
all_files = sorted(all_files, key=os.path.getmtime, reverse=True)
# Group files by their query prefix (timestamp_query)
grouped_files = {}
for f in all_files:
fname = os.path.basename(f)
prefix = '_'.join(fname.split('_')[:6]) # Get timestamp part
if prefix not in grouped_files:
grouped_files[prefix] = {'md': [], 'audio': [], 'loaded': False}
ext = os.path.splitext(fname)[1].lower()
if ext == '.md':
grouped_files[prefix]['md'].append(f)
elif ext in ['.mp3', '.wav']:
grouped_files[prefix]['audio'].append(f)
# Sort groups by timestamp (newest first)
sorted_groups = sorted(grouped_files.items(), key=lambda x: x[0], reverse=True)
# ๐โฌ๏ธ Sidebar delete all and zip all download
col1, col4 = st.sidebar.columns(2)
with col1:
if st.button("๐ Delete All"):
for f in all_files:
os.remove(f)
st.rerun()
st.session_state.should_rerun = True
with col4:
if st.button("โฌ๏ธ Zip All"):
zip_name = create_zip_of_files(md_files, mp3_files, wav_files,
st.session_state.get('last_query', ''))
if zip_name:
st.sidebar.markdown(get_download_link(zip_name, "zip"),
unsafe_allow_html=True)
# Display grouped files
for prefix, files in sorted_groups:
# Get a preview of content from first MD file
preview = ""
if files['md']:
with open(files['md'][0], "r", encoding="utf-8") as f:
preview = f.read(200).replace("\n", " ")
if len(preview) > 200:
preview += "..."
# Create unique key for this group
group_key = f"group_{prefix}"
if group_key not in st.session_state:
st.session_state[group_key] = False
# Display group expander
with st.sidebar.expander(f"๐ Query Group: {prefix}"):
st.write("**Preview:**")
st.write(preview)
# Load full content button
if st.button("๐ View Full Content", key=f"btn_{prefix}"):
st.session_state[group_key] = True
# Only show full content and audio if button was clicked
if st.session_state[group_key]:
# Display markdown files
for md_file in files['md']:
with open(md_file, "r", encoding="utf-8") as f:
content = f.read()
st.markdown("**Full Content:**")
st.markdown(content)
st.markdown(get_download_link(md_file, file_type="md"),
unsafe_allow_html=True)
# Display audio files
usePlaySidebar=False
if usePlaySidebar:
for audio_file in files['audio']:
ext = os.path.splitext(audio_file)[1].replace('.', '')
st.audio(audio_file)
st.markdown(get_download_link(audio_file, file_type=ext),
unsafe_allow_html=True)
def main():
# โถ 1) Setup marquee UI in the sidebar
update_marquee_settings_ui()
marquee_settings = get_marquee_settings()
# โถ 2) Display the marquee welcome
display_marquee(
st.session_state['marquee_content'],
{**marquee_settings, "font-size": "28px", "lineHeight": "50px"},
key_suffix="welcome"
)
# โถ 3) Main action tabs and model use choices
tab_main = st.radio("Action:", ["๐ค Voice", "๐ธ Media", "๐ ArXiv", "๐ Editor"],
horizontal=True)
useArxiv = st.checkbox("Search Arxiv for Research Paper Answers", value=True)
useArxivAudio = st.checkbox("Generate Audio File for Research Paper Answers", value=False)
# โถ 4) Show or hide custom component (optional example)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello from MyComponent")
if val:
val_stripped = val.replace('\\n', ' ')
edited_input = st.text_area("โ๏ธ Edit Input:", value=val_stripped, height=100)
run_option = st.selectbox("Model:", ["Arxiv", "Other (demo)"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("โ AutoRun", value=True)
with col2:
full_audio = st.checkbox("๐FullAudio", value=False)
input_changed = (val != st.session_state.old_val)
if autorun and input_changed:
st.session_state.old_val = val
st.session_state.last_query = edited_input
perform_ai_lookup(edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
else:
if st.button("โถ Run"):
st.session_state.old_val = val
st.session_state.last_query = edited_input
perform_ai_lookup(edited_input,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=full_audio, useArxiv=useArxiv, useArxivAudio=useArxivAudio)
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# TAB: ArXiv
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
if tab_main == "๐ ArXiv":
st.subheader("๐ Query ArXiv")
q = st.text_input("๐ Query:", key="arxiv_query")
st.markdown("### ๐ Options")
vocal_summary = st.checkbox("๐ShortAudio", value=True, key="option_vocal_summary")
extended_refs = st.checkbox("๐LongRefs", value=False, key="option_extended_refs")
titles_summary = st.checkbox("๐TitlesOnly", value=True, key="option_titles_summary")
full_audio = st.checkbox("๐FullAudio", value=False, key="option_full_audio")
full_transcript = st.checkbox("๐งพFullTranscript", value=False, key="option_full_transcript")
if q and st.button("๐Run"):
st.session_state.last_query = q
result = perform_ai_lookup(q,
vocal_summary=vocal_summary,
extended_refs=extended_refs,
titles_summary=titles_summary,
full_audio=full_audio)
if full_transcript:
create_file(q, result, "md")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# TAB: Voice
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
elif tab_main == "๐ค Voice":
display_voice_tab()
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# TAB: Media
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
elif tab_main == "๐ธ Media":
st.header("๐ธ Media Gallery")
tabs = st.tabs(["๐ต Audio", "๐ผ Images", "๐ฅ Video"])
# โถ AUDIO sub-tab
with tabs[0]:
st.subheader("๐ต Audio Files")
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
if audio_files:
for a in audio_files:
with st.expander(os.path.basename(a)):
st.audio(a)
ext = os.path.splitext(a)[1].replace('.', '')
dl_link = get_download_link(a, file_type=ext)
st.markdown(dl_link, unsafe_allow_html=True)
else:
st.write("No audio files found.")
# โถ IMAGES sub-tab
with tabs[1]:
st.subheader("๐ผ Image Files")
imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
if imgs:
c = st.slider("Cols", 1, 5, 3, key="cols_images")
cols = st.columns(c)
for i, f in enumerate(imgs):
with cols[i % c]:
st.image(Image.open(f), use_container_width=True)
else:
st.write("No images found.")
# โถ VIDEO sub-tab
with tabs[2]:
st.subheader("๐ฅ Video Files")
vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi")
if vids:
for v in vids:
with st.expander(os.path.basename(v)):
st.video(v)
else:
st.write("No videos found.")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# TAB: Editor
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
elif tab_main == "๐ Editor":
st.write("### ๐ File Editor (Minimal Demo)")
st.write("Select or create a file to edit. More advanced features can be added as needed.")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# SIDEBAR: FILE HISTORY + PERFORMANCE METRICS
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
display_file_history_in_sidebar()
log_performance_metrics()
# โถ Some light CSS styling
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button { margin-right: 0.5rem; }
</style>
""", unsafe_allow_html=True)
# โถ Rerun if needed
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__ == "__main__":
main()
|