Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import glob | |
import re | |
import base64 | |
import pytz | |
from urllib.parse import quote | |
from gradio_client import Client | |
from datetime import datetime | |
# ๐ณ๐ค AIKnowledgeTreeBuilder - Because every app needs a good costume! | |
Site_Name = 'AI Knowledge Tree Builder ๐๐ฟ Grow Smarter with Every Click' | |
title = "๐ณโจAI Knowledge Tree Builder๐ ๏ธ๐ค" | |
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' | |
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' | |
icons = '๐ณโจ๐ ๏ธ๐ค' | |
st.set_page_config( | |
page_title=title, | |
page_icon=icons, | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': helpURL, | |
'Report a bug': bugURL, | |
'About': title | |
} | |
) | |
# Initialize session state variables | |
if 'selected_file' not in st.session_state: | |
st.session_state.selected_file = None | |
if 'view_mode' not in st.session_state: | |
st.session_state.view_mode = 'view' | |
if 'files' not in st.session_state: | |
st.session_state.files = [] | |
AITopicsToInnovate1=""" | |
1. Major AI Industry Players ๐ | |
1. Research Leaders ๐ฏ | |
- OpenAI: GPT-4 DALL-E Foundation Models ๐ต | |
- Google: PaLM Gemini LLMs ๐ฆ | |
- Anthropic: Claude Constitutional AI โก | |
- Meta: LLaMA Open Source LLMs ๐ค | |
- xAI: Grok Conversational AI ๐ค | |
2. Technical AI Development ๐ ๏ธ | |
1. Architecture Advances ๐ซ | |
- Transformer Models Attention Mechanisms ๐ง | |
- Mixture of Experts MoE Architecture ๐ช | |
- Sparse Neural Networks ๐ธ๏ธ | |
- Multi-modal LLM Systems ๐ | |
- Flash Attention Optimization โ๏ธ | |
2. Training Methodologies ๐ | |
- LLM Supervised Fine-tuning ๐จโ๐ซ | |
- RLHF Reward Models ๐ค | |
- Constitutional AI Training ๐ | |
- RLAIF Feedback Models ๐ | |
- Synthetic Data LLM Training ๐ฒ | |
- Chain of Thought Prompting ๐งฉ | |
- Tree of Thoughts Reasoning ๐ณ | |
3. Post-Training Implementation ๐ง | |
- Neural Network Distillation ๐งช | |
- LLM Quantization Methods ๐ | |
- Neural Network Pruning โ๏ธ | |
- Knowledge Distillation Transfer ๐ | |
- Few-shot LLM Learning ๐ฏ | |
3. Mechanistic Interpretability ๐ฌ | |
1. Core Concepts ๐ก | |
- Neural Network Growth Analysis ๐ฑ | |
- LLM Architecture Analysis ๐๏ธ | |
- Training Loss Optimization ๐จ | |
- Neural Network Analogies ๐งฌ | |
2. Technical Features ๐ | |
- LLM Linear Representations โก๏ธ | |
- Neural Vector Arithmetic ๐ข | |
- Neural Activation Patterns ๐ | |
- LLM Feature Detection ๐ | |
- Neural Sparse Autoencoders ๐ญ | |
3. Network Analysis ๐ต๏ธ | |
- LLM Induction Heads ๐ | |
- Transformer Attention Analysis ๐ช | |
- Neural Circuit Analysis ๐ | |
- LLM Feature Visualization ๐ | |
- Neural Concept Directions ๐ณ | |
4. Future AI Developments ๐ | |
1. AGI Timeline โฐ | |
- AGI Capability Projections ๐ | |
- Neural Hardware Scaling ๐พ | |
- LLM Training Data Limits ๐ | |
- AI Compute Resources ๐บ๏ธ | |
2. Integration Fields ๐ก | |
- AI Biology Integration ๐ฎ | |
- AI Drug Discovery Systems ๐ | |
- AI Clinical Trial Analysis ๐ฅ | |
- AI Code Generation ๐คน | |
- AI Scientific Discovery ๐งฎ | |
5. Industry Best Practices ๐ | |
1. AI Team Building ๐ข | |
- AI Talent Development ๐ฅ | |
- AI Research Alignment ๐ช | |
- AI Team Scaling ๐ | |
- AI Research Culture ๐ | |
2. AI Research Qualities ๐ | |
- AI Research Methodology ๐งญ | |
- AI Experimentation Protocols ๐๏ธ | |
- AI Innovation Thinking ๐ซ | |
- AI Testing Framework โ๏ธ | |
3. AI Safety Standards ๐ก๏ธ | |
- LLM Behavioral Specifications ๐ | |
- AI Safety Guidelines ๐ฎ | |
- AI Ethics Framework โ๏ธ | |
- AI Industry Standards ๐คฒ | |
6. Emerging Research Areas ๐ฎ | |
1. Technical Focus ๐ฏ | |
- LLM Long Context Learning โณ | |
- LLM Multi-agent Interaction ๐พ | |
- AI Evaluation Metrics ๐ | |
- Neural Interpretability Methods ๐ญ | |
2. AI Applications ๐ผ | |
- AI Automated Research ๐งซ | |
- AI Code Synthesis โจ๏ธ | |
- AI Biological Modeling ๐งฏ | |
- AI Medical Diagnostics ๐ | |
7. Model Intelligence ๐งฟ | |
1. LLM System Development ๐ช | |
- LLM Prompt Engineering ๐ | |
- LLM Response Generation โ๏ธ | |
- LLM Behavioral Training ๐น | |
- LLM Personality Development ๐ช | |
2. LLM User Interaction ๐ญ | |
- LLM Autonomy Alignment ๐ช | |
- LLM Safety Boundaries ๐ | |
- LLM Communication Patterns ๐ฃ๏ธ | |
- LLM Performance Tuning ๐ข | |
""" | |
DarioAmodeiKnowledge=""" | |
1. Major AI Industry Players ๐ | |
1. Research Leaders ๐ฏ | |
- OpenAI: GPT-4 DALL-E ๐ต | |
- Google: PaLM Gemini ๐ฆ | |
- Anthropic: Claude โก | |
- Meta: LLaMA ๐ค | |
- xAI: Grok ๐ค | |
2. Technical AI Development ๐ ๏ธ | |
1. Architecture Advances ๐ซ | |
- Transformer Models ๐ง | |
- Mixture of Experts ๐ช | |
- Sparse Architectures ๐ธ๏ธ | |
- Multi-modal Models ๐ | |
- Flash Attention โ๏ธ | |
2. Training Methodologies ๐ | |
- Supervised Fine-tuning ๐จโ๐ซ | |
- RLHF Human Feedback ๐ค | |
- Constitutional AI ๐ | |
- RLAIF AI Feedback ๐ | |
- Synthetic Data Generation ๐ฒ | |
- Chain of Thought ๐งฉ | |
- Tree of Thoughts ๐ณ | |
3. Post-Training Implementation ๐ง | |
- Model Distillation ๐งช | |
- Quantization ๐ | |
- Pruning โ๏ธ | |
- Knowledge Distillation ๐ | |
- Few-shot Learning ๐ฏ | |
3. Mechanistic Interpretability ๐ฌ | |
1. Core Concepts ๐ก | |
- Neural Network Growth Patterns ๐ฑ | |
- Architecture Scaffolding ๐๏ธ | |
- Training Objective Guidance ๐จ | |
- Biological System Analogies ๐งฌ | |
2. Technical Features ๐ | |
- Linear Representations โก๏ธ | |
- Vector Arithmetic ๐ข | |
- Activation Patterns ๐ | |
- Feature Detection ๐ | |
- Sparse Autoencoders ๐ญ | |
3. Network Analysis ๐ต๏ธ | |
- Induction Heads ๐ | |
- Attention Mechanisms ๐ช | |
- Circuit Analysis ๐ | |
- Feature Visualization ๐ | |
- Concept Directions ๐ณ | |
4. Future AI Developments ๐ | |
1. AGI Timeline โฐ | |
- 2026-2027 Capability Projections ๐ | |
- Hardware Scaling ๐พ | |
- Data Limitations ๐ | |
- Geopolitical Factors ๐บ๏ธ | |
2. Integration Fields ๐ก | |
- Biology Research ๐ฎ | |
- Drug Discovery ๐ | |
- Clinical Trials ๐ฅ | |
- Programming Automation ๐คน | |
- Scientific Research ๐งฎ | |
5. Industry Best Practices ๐ | |
1. Team Building ๐ข | |
- Talent Density Focus ๐ฅ | |
- Mission Alignment ๐ช | |
- Rapid Scaling Management ๐ | |
- Culture Development ๐ | |
2. Research Qualities ๐ | |
- Scientific Mindset ๐งญ | |
- Experimental Approach ๐๏ธ | |
- Unconventional Thinking ๐ซ | |
- Rapid Testing โ๏ธ | |
3. Safety Standards ๐ก๏ธ | |
- Model Specifications ๐ | |
- Behavioral Guidelines ๐ฎ | |
- Ethics Implementation โ๏ธ | |
- Industry Collaboration ๐คฒ | |
6. Emerging Research Areas ๐ฎ | |
1. Technical Focus ๐ฏ | |
- Long Horizon Learning โณ | |
- Multi-agent Systems ๐พ | |
- Evaluation Systems ๐ | |
- Interpretability Research ๐ญ | |
2. Applications ๐ผ | |
- Automated Science ๐งซ | |
- AI Programming Tools โจ๏ธ | |
- Biological Simulation ๐งฏ | |
- Clinical Applications ๐ | |
7. Model Intelligence ๐งฟ | |
1. System Development ๐ช | |
- Prompt Engineering ๐ | |
- Response Patterns โ๏ธ | |
- Behavioral Modification ๐น | |
- Character Development ๐ช | |
2. User Interaction ๐ญ | |
- Autonomy Respect ๐ช | |
- Safety Boundaries ๐ | |
- Communication Adaptation ๐ฃ๏ธ | |
- Performance Optimization ๐ข | |
""" | |
# Define the markdown variables | |
Boxing_and_MMA_Commentary_and_Knowledge = """ | |
# Boxing and UFC Study of 1971 - 2024 The Greatest Fights History | |
1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim. | |
2. After changes to Boxing made it more safe due to the heart break. | |
3. Rehydration of the brain after weight ins loss preparation for a match is life saving change. | |
4. Fighting went from 15 rounds to 12. | |
# UFC By Contrast.. | |
1. 5 Rounds of 5 Minutes each. | |
2. Greatest UFC Fighters: | |
- Jon Jones could be the greatest of all time (GOAT) since he never lost. | |
- George St. Pierre | |
- BJ Penn | |
- Anderson Silva | |
- Mighty Mouse MMA's heart at 125 pounds | |
- Kabib retired 29 and 0 | |
- Fedor Milliano | |
- Alex Pereira | |
- James Tony | |
- Randy Couture | |
3. You have to Judge them in their Championship Peak | |
4. Chris Weidman | |
5. Connor McGregor | |
6. Leg Breaking - Shin calcification and breaking baseball bats | |
# References: | |
1. Joe Rogan - Interview #2219 | |
2. Donald J Trump | |
""" | |
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ | |
# Multiplayer Simulated Worlds | |
# Farming Simulator 25 Prompt Features with Emojis: | |
# Top Multiplayer and MMO Games 2024 | |
## 1. Top Multiplayer Survival & Simulation Games 2024 ๐ฎ | |
### 1.1 Survival Games ๐น | |
- **Rust** ๐ฆพ | |
* Advanced Base Building Physics | |
* Electricity & Automation Systems | |
* Dynamic Player-driven Economy | |
- **ARK: Survival Evolved** ๐ฆ | |
* Dinosaur Taming & Breeding | |
* Tek Tier Technology System | |
* Cross-map Resource Networks | |
- **Valheim** โ๏ธ | |
* Norse Mythology Building System | |
* Boss-progression World Evolution | |
* Structural Integrity Physics | |
- **DayZ** ๐ง | |
* Realistic Medical System | |
* Dynamic Disease Mechanics | |
* Advanced Ballistics Simulation | |
- **7 Days to Die** ๐ฐ | |
* Voxel Destruction Physics | |
* Dynamic Horde AI System | |
* Advanced Base Engineering | |
### 1.2 Simulation & Building Games ๐๏ธ | |
- **Satisfactory** ๐ญ | |
* 3D Factory Automation | |
* Vertical Building Systems | |
* Multi-tier Production Chains | |
- **Factorio** โ๏ธ | |
* Complex Logistics Networks | |
* Modular Factory Design | |
* Advanced Train Systems | |
- **Space Engineers** ๐ | |
* Physics-based Construction | |
* Programmable Block System | |
* Zero-G Engineering | |
- **Farming Simulator 22** ๐ | |
* Real Brand Machinery | |
* Complex Production Chains | |
* Season-based Agriculture | |
- **Eco** ๐ | |
* Economic Simulation | |
* Environmental Impact System | |
* Government Creation Tools | |
## 2. Top MMO Games 2024 ๐ | |
### 2.1 Fantasy MMORPGs ๐ก๏ธ | |
- **Final Fantasy XIV** โจ | |
* Job System Flexibility | |
* Story-driven Content | |
* Cross-platform Raids | |
- **World of Warcraft** ๐ฒ | |
* Dragonflight Flying System | |
* Mythic+ Challenge System | |
* Cross-faction Activities | |
- **Elder Scrolls Online** ๐น | |
* One Tamriel Level Scaling | |
* Housing Construction | |
* Champion Point System | |
- **Lost Ark** โ๏ธ | |
* Combat Skill System | |
* Island Content System | |
* Legion Raid Mechanics | |
- **Black Desert Online** ๐ญ | |
* Action Combat System | |
* Life Skill Systems | |
* Node Management | |
### 2.2 Modern/Sci-Fi MMOs ๐ธ | |
- **Destiny 2** ๐ฝ | |
* Buildcrafting System | |
* Raid Mechanics | |
* Season Narrative Structure | |
- **Star Wars: The Old Republic** ๐ | |
* Story Choice System | |
* Legacy System | |
* Companion Influence | |
- **Warframe** ๐ค | |
* Movement System | |
* Frame Customization | |
* Open World Integration | |
- **The Division 2** ๐๏ธ | |
* Cover Combat System | |
* Dark Zone Mechanics | |
* Recalibration System | |
- **Path of Exile** โก | |
* Skill Gem System | |
* Passive Tree Complexity | |
* League Mechanics | |
## 3. Notable Crossplay Games ๐ฏ | |
- **Minecraft** ๐ฆ | |
* Cross-platform Building | |
* Redstone Engineering | |
* Modded Servers | |
- **Sea of Thieves** ๐ดโโ ๏ธ | |
* Ship Combat Physics | |
* Crew Coordination | |
* World Events | |
- **No Man's Sky** ๐ช | |
* Procedural Planets | |
* Base Building Network | |
* Multiplayer Expeditions | |
""" | |
def get_display_name(filename): | |
"""Extract text from parentheses or return filename as is.""" | |
match = re.search(r'\((.*?)\)', filename) | |
if match: | |
return match.group(1) | |
return filename | |
def get_time_display(filename): | |
"""Extract just the time portion from the filename.""" | |
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) | |
if time_match: | |
return time_match.group(1) | |
return filename | |
def sanitize_filename(text): | |
"""Create a safe filename from text while preserving spaces.""" | |
# First replace unsafe characters with spaces | |
safe_text = re.sub(r'[^\w\s-]', ' ', text) | |
# Remove any multiple spaces | |
safe_text = re.sub(r'\s+', ' ', safe_text) | |
# Trim leading/trailing spaces | |
safe_text = safe_text.strip() | |
return safe_text[:50] # Limit length to 50 chars | |
def generate_timestamp_filename(query): | |
"""Generate filename with format: 1103AM 11032024 (Query).md""" | |
# Get current time in Central timezone | |
central = pytz.timezone('US/Central') | |
current_time = datetime.now(central) | |
# Format the timestamp parts | |
time_str = current_time.strftime("%I%M%p") # 1103AM format | |
date_str = current_time.strftime("%m%d%Y") # 11032024 format | |
# Clean up the query for filename - now preserving spaces | |
safe_query = sanitize_filename(query) | |
# Construct filename: "1103AM 11032024 (Input with spaces).md" | |
filename = f"{time_str} {date_str} ({safe_query}).md" | |
return filename | |
def delete_file(file_path): | |
"""Delete a file and return success status.""" | |
try: | |
os.remove(file_path) | |
return True | |
except Exception as e: | |
st.error(f"Error deleting file: {e}") | |
return False | |
def save_ai_interaction(query, ai_result, is_rerun=False): | |
"""Save AI interaction to a markdown file with new filename format.""" | |
filename = generate_timestamp_filename(query) | |
# Format the content differently for rerun vs normal query | |
if is_rerun: | |
content = f"""# Rerun Query | |
Original file content used for rerun: | |
{query} | |
# AI Response (Fun Version) | |
{ai_result} | |
""" | |
else: | |
content = f"""# Query: {query} | |
## AI Response | |
{ai_result} | |
""" | |
# Save to file | |
try: | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(content) | |
return filename | |
except Exception as e: | |
st.error(f"Error saving file: {e}") | |
return None | |
def get_file_download_link(file_path): | |
"""Generate a base64 download link for a file.""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
b64 = base64.b64encode(content.encode()).decode() | |
filename = os.path.basename(file_path) | |
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>' | |
except Exception as e: | |
st.error(f"Error creating download link: {e}") | |
return None | |
def extract_terms(markdown_text): | |
"""Parse markdown text and extract terms.""" | |
lines = markdown_text.strip().split('\n') | |
terms = [] | |
for line in lines: | |
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() | |
if line: | |
terms.append(line) | |
return terms | |
def display_terms_with_links(terms): | |
"""Display terms with various search links.""" | |
search_urls = { | |
"๐๐ArXiv": lambda k: f"/?q={quote(k)}", | |
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", | |
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}", | |
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", | |
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}", | |
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", | |
} | |
for term in terms: | |
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True) | |
def perform_ai_lookup(query): | |
"""Perform AI lookup using Gradio client.""" | |
st.write("Performing AI Lookup...") | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
result1 = client.predict( | |
prompt=query, | |
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
stream_outputs=True, | |
api_name="/ask_llm" | |
) | |
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") | |
st.markdown(result1) | |
result2 = client.predict( | |
prompt=query, | |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", | |
stream_outputs=True, | |
api_name="/ask_llm" | |
) | |
st.markdown("### Mistral-7B-Instruct-v0.2 Result") | |
st.markdown(result2) | |
combined_result = f"{result1}\n\n{result2}" | |
return combined_result | |
def display_file_content(file_path): | |
"""Display file content with editing capabilities.""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
if st.session_state.view_mode == 'view': | |
# Display as markdown when viewing | |
st.markdown(content) | |
else: | |
# Edit functionality | |
edited_content = st.text_area( | |
"Edit content", | |
content, | |
height=400, | |
key=f"edit_{os.path.basename(file_path)}" | |
) | |
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): | |
try: | |
with open(file_path, 'w', encoding='utf-8') as f: | |
f.write(edited_content) | |
st.success(f"Successfully saved changes to {file_path}") | |
except Exception as e: | |
st.error(f"Error saving changes: {e}") | |
except Exception as e: | |
st.error(f"Error reading file: {e}") | |
def file_management_sidebar(): | |
"""Redesigned sidebar with improved layout and additional functionality.""" | |
st.sidebar.title("๐ File Management") | |
# Get list of .md files excluding README.md | |
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] | |
md_files.sort() | |
st.session_state.files = md_files | |
if md_files: | |
st.sidebar.markdown("### Saved Files") | |
for idx, file in enumerate(md_files): | |
st.sidebar.markdown("---") # Separator between files | |
# Display time | |
st.sidebar.text(get_time_display(file)) | |
# Display download link with simplified text | |
download_link = get_file_download_link(file) | |
if download_link: | |
st.sidebar.markdown(download_link, unsafe_allow_html=True) | |
# Action buttons in a row | |
col1, col2, col3, col4 = st.sidebar.columns(4) | |
with col1: | |
if st.button("๐ View", key=f"view_{idx}"): | |
st.session_state.selected_file = file | |
st.session_state.view_mode = 'view' | |
with col2: | |
if st.button("โ๏ธ Edit", key=f"edit_{idx}"): | |
st.session_state.selected_file = file | |
st.session_state.view_mode = 'edit' | |
with col3: | |
if st.button("๐ Rerun", key=f"rerun_{idx}"): | |
try: | |
with open(file, 'r', encoding='utf-8') as f: | |
content = f.read() | |
# Prepare the prompt with the prefix | |
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: | |
""" | |
full_prompt = rerun_prefix + content | |
# Perform AI lookup and save results | |
ai_result = perform_ai_lookup(full_prompt) | |
saved_file = save_ai_interaction(content, ai_result, is_rerun=True) | |
if saved_file: | |
st.success(f"Created fun version in {saved_file}") | |
st.session_state.selected_file = saved_file | |
st.session_state.view_mode = 'view' | |
except Exception as e: | |
st.error(f"Error during rerun: {e}") | |
with col4: | |
if st.button("๐๏ธ Delete", key=f"delete_{idx}"): | |
if delete_file(file): | |
st.success(f"Deleted {file}") | |
st.rerun() | |
else: | |
st.error(f"Failed to delete {file}") | |
st.sidebar.markdown("---") | |
# Option to create a new markdown file | |
if st.sidebar.button("๐ Create New Note"): | |
filename = generate_timestamp_filename("New Note") | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write("# New Markdown File\n") | |
st.sidebar.success(f"Created: {filename}") | |
st.session_state.selected_file = filename | |
st.session_state.view_mode = 'edit' | |
else: | |
st.sidebar.write("No markdown files found.") | |
if st.sidebar.button("๐ Create First Note"): | |
filename = generate_timestamp_filename("New Note") | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write("# New Markdown File\n") | |
st.sidebar.success(f"Created: {filename}") | |
st.session_state.selected_file = filename | |
st.session_state.view_mode = 'edit' | |
def main(): | |
st.title("AI Knowledge Tree Builder ๐ง ๐ฑ Cultivate Your AI Mindscape!") | |
# Process query parameters and AI lookup first | |
query_params = st.query_params | |
query = query_params.get('q', '') | |
show_initial_content = True # Flag to control initial content display | |
# First priority: Handle active query | |
if query: | |
show_initial_content = False # Hide initial content when showing query results | |
st.write(f"### Search query received: {query}") | |
try: | |
ai_result = perform_ai_lookup(query) | |
# Save the interaction | |
saved_file = save_ai_interaction(query, ai_result) | |
if saved_file: | |
st.success(f"Saved interaction to {saved_file}") | |
st.session_state.selected_file = saved_file | |
st.session_state.view_mode = 'view' | |
except Exception as e: | |
st.error(f"Error during AI lookup: {e}") | |
# File management sidebar | |
file_management_sidebar() | |
# Second priority: Display selected file content if any | |
if st.session_state.selected_file: | |
show_initial_content = False # Hide initial content when showing file content | |
if os.path.exists(st.session_state.selected_file): | |
st.markdown(f"### Current File: {st.session_state.selected_file}") | |
display_file_content(st.session_state.selected_file) | |
else: | |
st.error("Selected file no longer exists.") | |
st.session_state.selected_file = None | |
st.rerun() | |
# Show initial content: Either when first landing or when no interactive elements are active | |
if show_initial_content: | |
# First show the clickable terms with links | |
terms1 = extract_terms(AITopicsToInnovate1) | |
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) | |
all_terms = terms1 + terms2 | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.markdown("# AI Topics to Innovate With") | |
st.markdown(AITopicsToInnovate1) | |
with col2: | |
st.markdown("# AI Agent Links") | |
display_terms_with_links(terms1) | |
with col3: | |
st.markdown("# Multiplayer Games and MMOs") | |
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) | |
with col4: | |
st.markdown("# Multiplayer Game and MMO Links | |
display_terms_with_links(terms2) | |
if __name__ == "__main__": | |
main() |