Spaces:
Running
Running
File size: 24,256 Bytes
2e679f3 93f54d2 2625a2d 67609ca 2e679f3 e1df218 2e679f3 67609ca 2e679f3 86c0fd1 827c209 86c0fd1 40ffaa0 86c0fd1 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 30fa482 827c209 2e679f3 68de287 d429406 8d7aa73 2625a2d 8d7aa73 2625a2d 8d7aa73 2625a2d d429406 2625a2d 93f54d2 d429406 93f54d2 d429406 93f54d2 2e679f3 68de287 2e679f3 68de287 2e679f3 67609ca 2e679f3 67609ca 68de287 2e679f3 67609ca 2e679f3 67609ca 2e679f3 93f54d2 2e679f3 93f54d2 d429406 2e679f3 93f54d2 2e679f3 68de287 2e679f3 68de287 93f54d2 2e679f3 68de287 2e679f3 68de287 93f54d2 d429406 93f54d2 68de287 d429406 93f54d2 68de287 d429406 68de287 2e679f3 93f54d2 68de287 2e679f3 68de287 d429406 68de287 d429406 93f54d2 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 42f0646 2e679f3 aaade2b 93f54d2 54e4022 93f54d2 54e4022 93f54d2 54e4022 93f54d2 32a3806 93f54d2 2e679f3 54e4022 93f54d2 54e4022 d429406 2e679f3 d429406 54e4022 827c209 aaade2b 54e4022 827c209 aaade2b 54e4022 827c209 54e4022 827c209 3d8bfc4 827c209 54e4022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
import streamlit as st
import os
import glob
import re
import base64
import pytz
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime
# ๐ณ๐ค AIKnowledgeTreeBuilder - Because every app needs a good costume!
Site_Name = 'AI Knowledge Tree Builder ๐๐ฟ Grow Smarter with Every Click'
title = "๐ณโจAI Knowledge Tree Builder๐ ๏ธ๐ค"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '๐ณโจ๐ ๏ธ๐ค'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Initialize session state variables
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
st.session_state.files = []
AITopicsToInnovate1="""
1. Major AI Industry Players ๐
1. Research Leaders ๐ฏ
- OpenAI: GPT-4 DALL-E Foundation Models ๐ต
- Google: PaLM Gemini LLMs ๐ฆ
- Anthropic: Claude Constitutional AI โก
- Meta: LLaMA Open Source LLMs ๐ค
- xAI: Grok Conversational AI ๐ค
2. Technical AI Development ๐ ๏ธ
1. Architecture Advances ๐ซ
- Transformer Models Attention Mechanisms ๐ง
- Mixture of Experts MoE Architecture ๐ช
- Sparse Neural Networks ๐ธ๏ธ
- Multi-modal LLM Systems ๐
- Flash Attention Optimization โ๏ธ
2. Training Methodologies ๐
- LLM Supervised Fine-tuning ๐จโ๐ซ
- RLHF Reward Models ๐ค
- Constitutional AI Training ๐
- RLAIF Feedback Models ๐
- Synthetic Data LLM Training ๐ฒ
- Chain of Thought Prompting ๐งฉ
- Tree of Thoughts Reasoning ๐ณ
3. Post-Training Implementation ๐ง
- Neural Network Distillation ๐งช
- LLM Quantization Methods ๐
- Neural Network Pruning โ๏ธ
- Knowledge Distillation Transfer ๐
- Few-shot LLM Learning ๐ฏ
3. Mechanistic Interpretability ๐ฌ
1. Core Concepts ๐ก
- Neural Network Growth Analysis ๐ฑ
- LLM Architecture Analysis ๐๏ธ
- Training Loss Optimization ๐จ
- Neural Network Analogies ๐งฌ
2. Technical Features ๐
- LLM Linear Representations โก๏ธ
- Neural Vector Arithmetic ๐ข
- Neural Activation Patterns ๐
- LLM Feature Detection ๐
- Neural Sparse Autoencoders ๐ญ
3. Network Analysis ๐ต๏ธ
- LLM Induction Heads ๐
- Transformer Attention Analysis ๐ช
- Neural Circuit Analysis ๐
- LLM Feature Visualization ๐
- Neural Concept Directions ๐ณ
4. Future AI Developments ๐
1. AGI Timeline โฐ
- AGI Capability Projections ๐
- Neural Hardware Scaling ๐พ
- LLM Training Data Limits ๐
- AI Compute Resources ๐บ๏ธ
2. Integration Fields ๐ก
- AI Biology Integration ๐ฎ
- AI Drug Discovery Systems ๐
- AI Clinical Trial Analysis ๐ฅ
- AI Code Generation ๐คน
- AI Scientific Discovery ๐งฎ
5. Industry Best Practices ๐
1. AI Team Building ๐ข
- AI Talent Development ๐ฅ
- AI Research Alignment ๐ช
- AI Team Scaling ๐
- AI Research Culture ๐
2. AI Research Qualities ๐
- AI Research Methodology ๐งญ
- AI Experimentation Protocols ๐๏ธ
- AI Innovation Thinking ๐ซ
- AI Testing Framework โ๏ธ
3. AI Safety Standards ๐ก๏ธ
- LLM Behavioral Specifications ๐
- AI Safety Guidelines ๐ฎ
- AI Ethics Framework โ๏ธ
- AI Industry Standards ๐คฒ
6. Emerging Research Areas ๐ฎ
1. Technical Focus ๐ฏ
- LLM Long Context Learning โณ
- LLM Multi-agent Interaction ๐พ
- AI Evaluation Metrics ๐
- Neural Interpretability Methods ๐ญ
2. AI Applications ๐ผ
- AI Automated Research ๐งซ
- AI Code Synthesis โจ๏ธ
- AI Biological Modeling ๐งฏ
- AI Medical Diagnostics ๐
7. Model Intelligence ๐งฟ
1. LLM System Development ๐ช
- LLM Prompt Engineering ๐
- LLM Response Generation โ๏ธ
- LLM Behavioral Training ๐น
- LLM Personality Development ๐ช
2. LLM User Interaction ๐ญ
- LLM Autonomy Alignment ๐ช
- LLM Safety Boundaries ๐
- LLM Communication Patterns ๐ฃ๏ธ
- LLM Performance Tuning ๐ข
"""
DarioAmodeiKnowledge="""
1. Major AI Industry Players ๐
1. Research Leaders ๐ฏ
- OpenAI: GPT-4 DALL-E ๐ต
- Google: PaLM Gemini ๐ฆ
- Anthropic: Claude โก
- Meta: LLaMA ๐ค
- xAI: Grok ๐ค
2. Technical AI Development ๐ ๏ธ
1. Architecture Advances ๐ซ
- Transformer Models ๐ง
- Mixture of Experts ๐ช
- Sparse Architectures ๐ธ๏ธ
- Multi-modal Models ๐
- Flash Attention โ๏ธ
2. Training Methodologies ๐
- Supervised Fine-tuning ๐จโ๐ซ
- RLHF Human Feedback ๐ค
- Constitutional AI ๐
- RLAIF AI Feedback ๐
- Synthetic Data Generation ๐ฒ
- Chain of Thought ๐งฉ
- Tree of Thoughts ๐ณ
3. Post-Training Implementation ๐ง
- Model Distillation ๐งช
- Quantization ๐
- Pruning โ๏ธ
- Knowledge Distillation ๐
- Few-shot Learning ๐ฏ
3. Mechanistic Interpretability ๐ฌ
1. Core Concepts ๐ก
- Neural Network Growth Patterns ๐ฑ
- Architecture Scaffolding ๐๏ธ
- Training Objective Guidance ๐จ
- Biological System Analogies ๐งฌ
2. Technical Features ๐
- Linear Representations โก๏ธ
- Vector Arithmetic ๐ข
- Activation Patterns ๐
- Feature Detection ๐
- Sparse Autoencoders ๐ญ
3. Network Analysis ๐ต๏ธ
- Induction Heads ๐
- Attention Mechanisms ๐ช
- Circuit Analysis ๐
- Feature Visualization ๐
- Concept Directions ๐ณ
4. Future AI Developments ๐
1. AGI Timeline โฐ
- 2026-2027 Capability Projections ๐
- Hardware Scaling ๐พ
- Data Limitations ๐
- Geopolitical Factors ๐บ๏ธ
2. Integration Fields ๐ก
- Biology Research ๐ฎ
- Drug Discovery ๐
- Clinical Trials ๐ฅ
- Programming Automation ๐คน
- Scientific Research ๐งฎ
5. Industry Best Practices ๐
1. Team Building ๐ข
- Talent Density Focus ๐ฅ
- Mission Alignment ๐ช
- Rapid Scaling Management ๐
- Culture Development ๐
2. Research Qualities ๐
- Scientific Mindset ๐งญ
- Experimental Approach ๐๏ธ
- Unconventional Thinking ๐ซ
- Rapid Testing โ๏ธ
3. Safety Standards ๐ก๏ธ
- Model Specifications ๐
- Behavioral Guidelines ๐ฎ
- Ethics Implementation โ๏ธ
- Industry Collaboration ๐คฒ
6. Emerging Research Areas ๐ฎ
1. Technical Focus ๐ฏ
- Long Horizon Learning โณ
- Multi-agent Systems ๐พ
- Evaluation Systems ๐
- Interpretability Research ๐ญ
2. Applications ๐ผ
- Automated Science ๐งซ
- AI Programming Tools โจ๏ธ
- Biological Simulation ๐งฏ
- Clinical Applications ๐
7. Model Intelligence ๐งฟ
1. System Development ๐ช
- Prompt Engineering ๐
- Response Patterns โ๏ธ
- Behavioral Modification ๐น
- Character Development ๐ช
2. User Interaction ๐ญ
- Autonomy Respect ๐ช
- Safety Boundaries ๐
- Communication Adaptation ๐ฃ๏ธ
- Performance Optimization ๐ข
"""
# Define the markdown variables
Boxing_and_MMA_Commentary_and_Knowledge = """
# Boxing and UFC Study of 1971 - 2024 The Greatest Fights History
1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim.
2. After changes to Boxing made it more safe due to the heart break.
3. Rehydration of the brain after weight ins loss preparation for a match is life saving change.
4. Fighting went from 15 rounds to 12.
# UFC By Contrast..
1. 5 Rounds of 5 Minutes each.
2. Greatest UFC Fighters:
- Jon Jones could be the greatest of all time (GOAT) since he never lost.
- George St. Pierre
- BJ Penn
- Anderson Silva
- Mighty Mouse MMA's heart at 125 pounds
- Kabib retired 29 and 0
- Fedor Milliano
- Alex Pereira
- James Tony
- Randy Couture
3. You have to Judge them in their Championship Peak
4. Chris Weidman
5. Connor McGregor
6. Leg Breaking - Shin calcification and breaking baseball bats
# References:
1. Joe Rogan - Interview #2219
2. Donald J Trump
"""
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """
# Multiplayer Simulated Worlds
# Farming Simulator 25 Prompt Features with Emojis:
# Top Multiplayer and MMO Games 2024
## 1. Top Multiplayer Survival & Simulation Games 2024 ๐ฎ
### 1.1 Survival Games ๐น
- **Rust** ๐ฆพ
* Advanced Base Building Physics
* Electricity & Automation Systems
* Dynamic Player-driven Economy
- **ARK: Survival Evolved** ๐ฆ
* Dinosaur Taming & Breeding
* Tek Tier Technology System
* Cross-map Resource Networks
- **Valheim** โ๏ธ
* Norse Mythology Building System
* Boss-progression World Evolution
* Structural Integrity Physics
- **DayZ** ๐ง
* Realistic Medical System
* Dynamic Disease Mechanics
* Advanced Ballistics Simulation
- **7 Days to Die** ๐ฐ
* Voxel Destruction Physics
* Dynamic Horde AI System
* Advanced Base Engineering
### 1.2 Simulation & Building Games ๐๏ธ
- **Satisfactory** ๐ญ
* 3D Factory Automation
* Vertical Building Systems
* Multi-tier Production Chains
- **Factorio** โ๏ธ
* Complex Logistics Networks
* Modular Factory Design
* Advanced Train Systems
- **Space Engineers** ๐
* Physics-based Construction
* Programmable Block System
* Zero-G Engineering
- **Farming Simulator 22** ๐
* Real Brand Machinery
* Complex Production Chains
* Season-based Agriculture
- **Eco** ๐
* Economic Simulation
* Environmental Impact System
* Government Creation Tools
## 2. Top MMO Games 2024 ๐
### 2.1 Fantasy MMORPGs ๐ก๏ธ
- **Final Fantasy XIV** โจ
* Job System Flexibility
* Story-driven Content
* Cross-platform Raids
- **World of Warcraft** ๐ฒ
* Dragonflight Flying System
* Mythic+ Challenge System
* Cross-faction Activities
- **Elder Scrolls Online** ๐น
* One Tamriel Level Scaling
* Housing Construction
* Champion Point System
- **Lost Ark** โ๏ธ
* Combat Skill System
* Island Content System
* Legion Raid Mechanics
- **Black Desert Online** ๐ญ
* Action Combat System
* Life Skill Systems
* Node Management
### 2.2 Modern/Sci-Fi MMOs ๐ธ
- **Destiny 2** ๐ฝ
* Buildcrafting System
* Raid Mechanics
* Season Narrative Structure
- **Star Wars: The Old Republic** ๐
* Story Choice System
* Legacy System
* Companion Influence
- **Warframe** ๐ค
* Movement System
* Frame Customization
* Open World Integration
- **The Division 2** ๐๏ธ
* Cover Combat System
* Dark Zone Mechanics
* Recalibration System
- **Path of Exile** โก
* Skill Gem System
* Passive Tree Complexity
* League Mechanics
## 3. Notable Crossplay Games ๐ฏ
- **Minecraft** ๐ฆ
* Cross-platform Building
* Redstone Engineering
* Modded Servers
- **Sea of Thieves** ๐ดโโ ๏ธ
* Ship Combat Physics
* Crew Coordination
* World Events
- **No Man's Sky** ๐ช
* Procedural Planets
* Base Building Network
* Multiplayer Expeditions
"""
def get_display_name(filename):
"""Extract text from parentheses or return filename as is."""
match = re.search(r'\((.*?)\)', filename)
if match:
return match.group(1)
return filename
def get_time_display(filename):
"""Extract just the time portion from the filename."""
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
if time_match:
return time_match.group(1)
return filename
def sanitize_filename(text):
"""Create a safe filename from text while preserving spaces."""
# First replace unsafe characters with spaces
safe_text = re.sub(r'[^\w\s-]', ' ', text)
# Remove any multiple spaces
safe_text = re.sub(r'\s+', ' ', safe_text)
# Trim leading/trailing spaces
safe_text = safe_text.strip()
return safe_text[:50] # Limit length to 50 chars
def generate_timestamp_filename(query):
"""Generate filename with format: 1103AM 11032024 (Query).md"""
# Get current time in Central timezone
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
# Format the timestamp parts
time_str = current_time.strftime("%I%M%p") # 1103AM format
date_str = current_time.strftime("%m%d%Y") # 11032024 format
# Clean up the query for filename - now preserving spaces
safe_query = sanitize_filename(query)
# Construct filename: "1103AM 11032024 (Input with spaces).md"
filename = f"{time_str} {date_str} ({safe_query}).md"
return filename
def delete_file(file_path):
"""Delete a file and return success status."""
try:
os.remove(file_path)
return True
except Exception as e:
st.error(f"Error deleting file: {e}")
return False
def save_ai_interaction(query, ai_result, is_rerun=False):
"""Save AI interaction to a markdown file with new filename format."""
filename = generate_timestamp_filename(query)
# Format the content differently for rerun vs normal query
if is_rerun:
content = f"""# Rerun Query
Original file content used for rerun:
{query}
# AI Response (Fun Version)
{ai_result}
"""
else:
content = f"""# Query: {query}
## AI Response
{ai_result}
"""
# Save to file
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return filename
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def get_file_download_link(file_path):
"""Generate a base64 download link for a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
b64 = base64.b64encode(content.encode()).decode()
filename = os.path.basename(file_path)
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
except Exception as e:
st.error(f"Error creating download link: {e}")
return None
def extract_terms(markdown_text):
"""Parse markdown text and extract terms."""
lines = markdown_text.strip().split('\n')
terms = []
for line in lines:
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip()
if line:
terms.append(line)
return terms
def display_terms_with_links(terms):
"""Display terms with various search links."""
search_urls = {
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True)
def perform_ai_lookup(query):
"""Perform AI lookup using Gradio client."""
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
return combined_result
def display_file_content(file_path):
"""Display file content with editing capabilities."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if st.session_state.view_mode == 'view':
# Display as markdown when viewing
st.markdown(content)
else:
# Edit functionality
edited_content = st.text_area(
"Edit content",
content,
height=400,
key=f"edit_{os.path.basename(file_path)}"
)
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
try:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(edited_content)
st.success(f"Successfully saved changes to {file_path}")
except Exception as e:
st.error(f"Error saving changes: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
def file_management_sidebar():
"""Redesigned sidebar with improved layout and additional functionality."""
st.sidebar.title("๐ File Management")
# Get list of .md files excluding README.md
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
md_files.sort()
st.session_state.files = md_files
if md_files:
st.sidebar.markdown("### Saved Files")
for idx, file in enumerate(md_files):
st.sidebar.markdown("---") # Separator between files
# Display time
st.sidebar.text(get_time_display(file))
# Display download link with simplified text
download_link = get_file_download_link(file)
if download_link:
st.sidebar.markdown(download_link, unsafe_allow_html=True)
# Action buttons in a row
col1, col2, col3, col4 = st.sidebar.columns(4)
with col1:
if st.button("๐ View", key=f"view_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'view'
with col2:
if st.button("โ๏ธ Edit", key=f"edit_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'edit'
with col3:
if st.button("๐ Rerun", key=f"rerun_{idx}"):
try:
with open(file, 'r', encoding='utf-8') as f:
content = f.read()
# Prepare the prompt with the prefix
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:
"""
full_prompt = rerun_prefix + content
# Perform AI lookup and save results
ai_result = perform_ai_lookup(full_prompt)
saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
if saved_file:
st.success(f"Created fun version in {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during rerun: {e}")
with col4:
if st.button("๐๏ธ Delete", key=f"delete_{idx}"):
if delete_file(file):
st.success(f"Deleted {file}")
st.rerun()
else:
st.error(f"Failed to delete {file}")
st.sidebar.markdown("---")
# Option to create a new markdown file
if st.sidebar.button("๐ Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
else:
st.sidebar.write("No markdown files found.")
if st.sidebar.button("๐ Create First Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
def main():
st.title("AI Knowledge Tree Builder ๐ง ๐ฑ Cultivate Your AI Mindscape!")
# Process query parameters and AI lookup first
query_params = st.query_params
query = query_params.get('q', '')
show_initial_content = True # Flag to control initial content display
# First priority: Handle active query
if query:
show_initial_content = False # Hide initial content when showing query results
st.write(f"### Search query received: {query}")
try:
ai_result = perform_ai_lookup(query)
# Save the interaction
saved_file = save_ai_interaction(query, ai_result)
if saved_file:
st.success(f"Saved interaction to {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during AI lookup: {e}")
# File management sidebar
file_management_sidebar()
# Second priority: Display selected file content if any
if st.session_state.selected_file:
show_initial_content = False # Hide initial content when showing file content
if os.path.exists(st.session_state.selected_file):
st.markdown(f"### Current File: {st.session_state.selected_file}")
display_file_content(st.session_state.selected_file)
else:
st.error("Selected file no longer exists.")
st.session_state.selected_file = None
st.rerun()
# Show initial content: Either when first landing or when no interactive elements are active
if show_initial_content:
# First show the clickable terms with links
terms1 = extract_terms(AITopicsToInnovate1)
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
all_terms = terms1 + terms2
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("# AI Topics to Innovate With")
st.markdown(AITopicsToInnovate1)
with col2:
st.markdown("# AI Agent Links")
display_terms_with_links(terms1)
with col3:
st.markdown("# Multiplayer Games and MMOs")
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
with col4:
st.markdown("# Multiplayer Game and MMO Links
display_terms_with_links(terms2)
if __name__ == "__main__":
main() |