File size: 24,256 Bytes
2e679f3
 
 
 
93f54d2
2625a2d
67609ca
2e679f3
 
 
e1df218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e679f3
 
 
 
 
67609ca
 
2e679f3
86c0fd1
 
827c209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c0fd1
40ffaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c0fd1
 
 
 
 
 
2e679f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fee9d8b
 
2e679f3
fee9d8b
2e679f3
 
 
fee9d8b
2e679f3
 
 
 
 
 
 
 
 
 
30fa482
827c209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e679f3
 
68de287
 
 
 
 
 
 
d429406
 
 
 
 
 
 
8d7aa73
 
 
 
 
 
 
 
 
 
2625a2d
 
 
 
 
 
 
 
 
 
8d7aa73
2625a2d
 
8d7aa73
2625a2d
 
 
 
d429406
 
 
 
 
 
 
 
 
 
2625a2d
 
93f54d2
d429406
 
 
 
 
 
 
 
 
 
 
 
93f54d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d429406
 
93f54d2
 
 
 
2e679f3
68de287
2e679f3
 
 
 
 
 
 
 
 
68de287
2e679f3
67609ca
2e679f3
 
 
 
 
 
 
 
 
 
67609ca
68de287
2e679f3
 
 
67609ca
2e679f3
 
 
 
 
 
 
67609ca
2e679f3
 
 
 
 
 
 
 
 
93f54d2
 
2e679f3
93f54d2
 
 
d429406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e679f3
93f54d2
2e679f3
 
68de287
2e679f3
 
68de287
 
 
93f54d2
 
2e679f3
68de287
2e679f3
68de287
93f54d2
d429406
 
93f54d2
68de287
 
 
d429406
93f54d2
68de287
d429406
68de287
 
 
2e679f3
 
93f54d2
68de287
 
2e679f3
 
68de287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d429406
68de287
 
 
 
 
 
 
 
d429406
 
 
 
 
 
 
 
93f54d2
68de287
2e679f3
68de287
 
 
2e679f3
68de287
 
2e679f3
 
 
68de287
 
 
2e679f3
68de287
 
2e679f3
 
 
42f0646
2e679f3
aaade2b
93f54d2
 
54e4022
93f54d2
54e4022
93f54d2
54e4022
93f54d2
 
32a3806
93f54d2
 
 
 
 
 
 
 
 
2e679f3
 
 
 
54e4022
93f54d2
54e4022
d429406
 
 
 
 
 
 
2e679f3
d429406
54e4022
 
827c209
aaade2b
 
54e4022
827c209
aaade2b
54e4022
827c209
 
54e4022
827c209
 
 
 
3d8bfc4
827c209
 
 
54e4022
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import streamlit as st
import os
import glob
import re
import base64
import pytz
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime

# ๐ŸŒณ๐Ÿค– AIKnowledgeTreeBuilder - Because every app needs a good costume!
Site_Name = 'AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ Grow Smarter with Every Click'
title = "๐ŸŒณโœจAI Knowledge Tree Builder๐Ÿ› ๏ธ๐Ÿค“"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '๐ŸŒณโœจ๐Ÿ› ๏ธ๐Ÿค“'
st.set_page_config(
    page_title=title,
    page_icon=icons,
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': helpURL,
        'Report a bug': bugURL,
        'About': title
    }
)


# Initialize session state variables
if 'selected_file' not in st.session_state:
    st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
    st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
    st.session_state.files = []



AITopicsToInnovate1="""
1. Major AI Industry Players ๐ŸŒ
   1. Research Leaders ๐ŸŽฏ
      - OpenAI: GPT-4 DALL-E Foundation Models ๐Ÿ”ต
      - Google: PaLM Gemini LLMs ๐ŸŸฆ
      - Anthropic: Claude Constitutional AI โšก
      - Meta: LLaMA Open Source LLMs ๐Ÿ‘ค
      - xAI: Grok Conversational AI ๐Ÿค–
   
2. Technical AI Development ๐Ÿ› ๏ธ
   1. Architecture Advances ๐Ÿ’ซ
      - Transformer Models Attention Mechanisms ๐Ÿง 
      - Mixture of Experts MoE Architecture ๐ŸŽช
      - Sparse Neural Networks ๐Ÿ•ธ๏ธ
      - Multi-modal LLM Systems ๐ŸŒˆ
      - Flash Attention Optimization โš”๏ธ
   
   2. Training Methodologies ๐Ÿ“š
      - LLM Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ
      - RLHF Reward Models ๐Ÿค
      - Constitutional AI Training ๐Ÿ“œ
      - RLAIF Feedback Models ๐Ÿ”„
      - Synthetic Data LLM Training ๐ŸŽฒ
      - Chain of Thought Prompting ๐Ÿงฉ
      - Tree of Thoughts Reasoning ๐ŸŒณ
   
   3. Post-Training Implementation ๐Ÿ”ง
      - Neural Network Distillation ๐Ÿงช
      - LLM Quantization Methods ๐Ÿ“Š
      - Neural Network Pruning โœ‚๏ธ
      - Knowledge Distillation Transfer ๐Ÿ“–
      - Few-shot LLM Learning ๐ŸŽฏ

3. Mechanistic Interpretability ๐Ÿ”ฌ
   1. Core Concepts ๐Ÿ’ก
      - Neural Network Growth Analysis ๐ŸŒฑ
      - LLM Architecture Analysis ๐Ÿ—๏ธ
      - Training Loss Optimization ๐ŸŽจ
      - Neural Network Analogies ๐Ÿงฌ
   
   2. Technical Features ๐Ÿ“
      - LLM Linear Representations โžก๏ธ
      - Neural Vector Arithmetic ๐Ÿ”ข
      - Neural Activation Patterns ๐ŸŒŠ
      - LLM Feature Detection ๐Ÿ”
      - Neural Sparse Autoencoders ๐ŸŽญ
   
   3. Network Analysis ๐Ÿ•ต๏ธ
      - LLM Induction Heads ๐Ÿ‘€
      - Transformer Attention Analysis ๐ŸŽช
      - Neural Circuit Analysis ๐Ÿ”Œ
      - LLM Feature Visualization ๐Ÿ“ˆ
      - Neural Concept Directions ๐ŸŽณ

4. Future AI Developments ๐Ÿš€
   1. AGI Timeline โฐ
      - AGI Capability Projections ๐Ÿ“…
      - Neural Hardware Scaling ๐Ÿ’พ
      - LLM Training Data Limits ๐Ÿ“‰
      - AI Compute Resources ๐Ÿ—บ๏ธ
   
   2. Integration Fields ๐ŸŽก
      - AI Biology Integration ๐Ÿ”ฎ
      - AI Drug Discovery Systems ๐Ÿ’Š
      - AI Clinical Trial Analysis ๐Ÿฅ
      - AI Code Generation ๐Ÿคน
      - AI Scientific Discovery ๐Ÿงฎ

5. Industry Best Practices ๐Ÿ’Ž
   1. AI Team Building ๐Ÿข
      - AI Talent Development ๐Ÿ‘ฅ
      - AI Research Alignment ๐ŸŽช
      - AI Team Scaling ๐Ÿ“Š
      - AI Research Culture ๐ŸŒŸ
   
   2. AI Research Qualities ๐ŸŽ“
      - AI Research Methodology ๐Ÿงญ
      - AI Experimentation Protocols ๐Ÿ—๏ธ
      - AI Innovation Thinking ๐Ÿ’ซ
      - AI Testing Framework โš–๏ธ
   
   3. AI Safety Standards ๐Ÿ›ก๏ธ
      - LLM Behavioral Specifications ๐Ÿ“‹
      - AI Safety Guidelines ๐ŸŽฎ
      - AI Ethics Framework โ›‘๏ธ
      - AI Industry Standards ๐Ÿคฒ

6. Emerging Research Areas ๐Ÿ”ฎ
   1. Technical Focus ๐ŸŽฏ
      - LLM Long Context Learning โณ
      - LLM Multi-agent Interaction ๐Ÿ‘พ
      - AI Evaluation Metrics ๐Ÿ“Œ
      - Neural Interpretability Methods ๐Ÿ”ญ
   
   2. AI Applications ๐Ÿ’ผ
      - AI Automated Research ๐Ÿงซ
      - AI Code Synthesis โŒจ๏ธ
      - AI Biological Modeling ๐Ÿงฏ
      - AI Medical Diagnostics ๐Ÿ’‰

7. Model Intelligence ๐Ÿงฟ
   1. LLM System Development ๐ŸŽช
      - LLM Prompt Engineering ๐Ÿ“
      - LLM Response Generation โ™Ÿ๏ธ
      - LLM Behavioral Training ๐ŸŽน
      - LLM Personality Development ๐ŸŽช
   
   2. LLM User Interaction ๐ŸŽญ
      - LLM Autonomy Alignment ๐ŸŽช
      - LLM Safety Boundaries ๐Ÿ”’
      - LLM Communication Patterns ๐Ÿ—ฃ๏ธ
      - LLM Performance Tuning ๐ŸŽข

"""




DarioAmodeiKnowledge="""
1. Major AI Industry Players ๐ŸŒ
   1. Research Leaders ๐ŸŽฏ
      - OpenAI: GPT-4 DALL-E ๐Ÿ”ต
      - Google: PaLM Gemini ๐ŸŸฆ
      - Anthropic: Claude โšก
      - Meta: LLaMA ๐Ÿ‘ค
      - xAI: Grok ๐Ÿค–
   
2. Technical AI Development ๐Ÿ› ๏ธ
   1. Architecture Advances ๐Ÿ’ซ
      - Transformer Models ๐Ÿง 
      - Mixture of Experts ๐ŸŽช
      - Sparse Architectures ๐Ÿ•ธ๏ธ
      - Multi-modal Models ๐ŸŒˆ
      - Flash Attention โš”๏ธ
   
   2. Training Methodologies ๐Ÿ“š
      - Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ
      - RLHF Human Feedback ๐Ÿค
      - Constitutional AI ๐Ÿ“œ
      - RLAIF AI Feedback ๐Ÿ”„
      - Synthetic Data Generation ๐ŸŽฒ
      - Chain of Thought ๐Ÿงฉ
      - Tree of Thoughts ๐ŸŒณ
   
   3. Post-Training Implementation ๐Ÿ”ง
      - Model Distillation ๐Ÿงช
      - Quantization ๐Ÿ“Š
      - Pruning โœ‚๏ธ
      - Knowledge Distillation ๐Ÿ“–
      - Few-shot Learning ๐ŸŽฏ

3. Mechanistic Interpretability ๐Ÿ”ฌ
   1. Core Concepts ๐Ÿ’ก
      - Neural Network Growth Patterns ๐ŸŒฑ
      - Architecture Scaffolding ๐Ÿ—๏ธ
      - Training Objective Guidance ๐ŸŽจ
      - Biological System Analogies ๐Ÿงฌ
   
   2. Technical Features ๐Ÿ“
      - Linear Representations โžก๏ธ
      - Vector Arithmetic ๐Ÿ”ข
      - Activation Patterns ๐ŸŒŠ
      - Feature Detection ๐Ÿ”
      - Sparse Autoencoders ๐ŸŽญ
   
   3. Network Analysis ๐Ÿ•ต๏ธ
      - Induction Heads ๐Ÿ‘€
      - Attention Mechanisms ๐ŸŽช
      - Circuit Analysis ๐Ÿ”Œ
      - Feature Visualization ๐Ÿ“ˆ
      - Concept Directions ๐ŸŽณ

4. Future AI Developments ๐Ÿš€
   1. AGI Timeline โฐ
      - 2026-2027 Capability Projections ๐Ÿ“…
      - Hardware Scaling ๐Ÿ’พ
      - Data Limitations ๐Ÿ“‰
      - Geopolitical Factors ๐Ÿ—บ๏ธ
   
   2. Integration Fields ๐ŸŽก
      - Biology Research ๐Ÿ”ฎ
      - Drug Discovery ๐Ÿ’Š
      - Clinical Trials ๐Ÿฅ
      - Programming Automation ๐Ÿคน
      - Scientific Research ๐Ÿงฎ

5. Industry Best Practices ๐Ÿ’Ž
   1. Team Building ๐Ÿข
      - Talent Density Focus ๐Ÿ‘ฅ
      - Mission Alignment ๐ŸŽช
      - Rapid Scaling Management ๐Ÿ“Š
      - Culture Development ๐ŸŒŸ
   
   2. Research Qualities ๐ŸŽ“
      - Scientific Mindset ๐Ÿงญ
      - Experimental Approach ๐Ÿ—๏ธ
      - Unconventional Thinking ๐Ÿ’ซ
      - Rapid Testing โš–๏ธ
   
   3. Safety Standards ๐Ÿ›ก๏ธ
      - Model Specifications ๐Ÿ“‹
      - Behavioral Guidelines ๐ŸŽฎ
      - Ethics Implementation โ›‘๏ธ
      - Industry Collaboration ๐Ÿคฒ

6. Emerging Research Areas ๐Ÿ”ฎ
   1. Technical Focus ๐ŸŽฏ
      - Long Horizon Learning โณ
      - Multi-agent Systems ๐Ÿ‘พ
      - Evaluation Systems ๐Ÿ“Œ
      - Interpretability Research ๐Ÿ”ญ
   
   2. Applications ๐Ÿ’ผ
      - Automated Science ๐Ÿงซ
      - AI Programming Tools โŒจ๏ธ
      - Biological Simulation ๐Ÿงฏ
      - Clinical Applications ๐Ÿ’‰

7. Model Intelligence ๐Ÿงฟ
   1. System Development ๐ŸŽช
      - Prompt Engineering ๐Ÿ“
      - Response Patterns โ™Ÿ๏ธ
      - Behavioral Modification ๐ŸŽน
      - Character Development ๐ŸŽช
   
   2. User Interaction ๐ŸŽญ
      - Autonomy Respect ๐ŸŽช
      - Safety Boundaries ๐Ÿ”’
      - Communication Adaptation ๐Ÿ—ฃ๏ธ
      - Performance Optimization ๐ŸŽข

"""




# Define the markdown variables
Boxing_and_MMA_Commentary_and_Knowledge = """
# Boxing and UFC Study of 1971 - 2024 The Greatest Fights History

1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim.
2. After changes to Boxing made it more safe due to the heart break.
3. Rehydration of the brain after weight ins loss preparation for a match is life saving change.
4. Fighting went from 15 rounds to 12.

# UFC By Contrast..
1. 5 Rounds of 5 Minutes each.
2. Greatest UFC Fighters:
    - Jon Jones could be the greatest of all time (GOAT) since he never lost.
    - George St. Pierre
    - BJ Penn
    - Anderson Silva
    - Mighty Mouse MMA's heart at 125 pounds
    - Kabib retired 29 and 0
    - Fedor Milliano
    - Alex Pereira
    - James Tony
    - Randy Couture
3. You have to Judge them in their Championship Peak
4. Chris Weidman
5. Connor McGregor
6. Leg Breaking - Shin calcification and breaking baseball bats

# References:
1. Joe Rogan - Interview #2219
2. Donald J Trump
"""

Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """
# Multiplayer Simulated Worlds

# Farming Simulator 25 Prompt Features with Emojis:
# Top Multiplayer and MMO Games 2024

## 1. Top Multiplayer Survival & Simulation Games 2024 ๐ŸŽฎ
### 1.1 Survival Games ๐Ÿน
- **Rust** ๐Ÿฆพ
  * Advanced Base Building Physics
  * Electricity & Automation Systems
  * Dynamic Player-driven Economy
      
- **ARK: Survival Evolved** ๐Ÿฆ–
  * Dinosaur Taming & Breeding
  * Tek Tier Technology System
  * Cross-map Resource Networks
      
- **Valheim** โš”๏ธ
  * Norse Mythology Building System
  * Boss-progression World Evolution
  * Structural Integrity Physics
      
- **DayZ** ๐ŸงŸ
  * Realistic Medical System
  * Dynamic Disease Mechanics
  * Advanced Ballistics Simulation
      
- **7 Days to Die** ๐Ÿฐ
  * Voxel Destruction Physics
  * Dynamic Horde AI System
  * Advanced Base Engineering

### 1.2 Simulation & Building Games ๐Ÿ—๏ธ
- **Satisfactory** ๐Ÿญ
  * 3D Factory Automation
  * Vertical Building Systems
  * Multi-tier Production Chains
      
- **Factorio** โš™๏ธ
  * Complex Logistics Networks
  * Modular Factory Design
  * Advanced Train Systems
      
- **Space Engineers** ๐Ÿš€
  * Physics-based Construction
  * Programmable Block System
  * Zero-G Engineering

- **Farming Simulator 22** ๐Ÿšœ
  * Real Brand Machinery
  * Complex Production Chains
  * Season-based Agriculture

- **Eco** ๐ŸŒ
  * Economic Simulation
  * Environmental Impact System
  * Government Creation Tools

## 2. Top MMO Games 2024 ๐ŸŒ
### 2.1 Fantasy MMORPGs ๐Ÿ—ก๏ธ
- **Final Fantasy XIV** โœจ
  * Job System Flexibility
  * Story-driven Content
  * Cross-platform Raids
      
- **World of Warcraft** ๐Ÿฒ
  * Dragonflight Flying System
  * Mythic+ Challenge System
  * Cross-faction Activities
      
- **Elder Scrolls Online** ๐Ÿน
  * One Tamriel Level Scaling
  * Housing Construction
  * Champion Point System
      
- **Lost Ark** โš”๏ธ
  * Combat Skill System
  * Island Content System
  * Legion Raid Mechanics
      
- **Black Desert Online** ๐ŸŽญ
  * Action Combat System
  * Life Skill Systems
  * Node Management

### 2.2 Modern/Sci-Fi MMOs ๐Ÿ›ธ
- **Destiny 2** ๐Ÿ‘ฝ
  * Buildcrafting System
  * Raid Mechanics
  * Season Narrative Structure
      
- **Star Wars: The Old Republic** ๐ŸŒŸ
  * Story Choice System
  * Legacy System
  * Companion Influence
      
- **Warframe** ๐Ÿค–
  * Movement System
  * Frame Customization
  * Open World Integration
      
- **The Division 2** ๐Ÿ™๏ธ
  * Cover Combat System
  * Dark Zone Mechanics
  * Recalibration System
      
- **Path of Exile** โšก
  * Skill Gem System
  * Passive Tree Complexity
  * League Mechanics

## 3. Notable Crossplay Games ๐ŸŽฏ
- **Minecraft** ๐Ÿ“ฆ
  * Cross-platform Building
  * Redstone Engineering
  * Modded Servers

- **Sea of Thieves** ๐Ÿดโ€โ˜ ๏ธ
  * Ship Combat Physics
  * Crew Coordination
  * World Events

- **No Man's Sky** ๐Ÿช
  * Procedural Planets
  * Base Building Network
  * Multiplayer Expeditions
"""

def get_display_name(filename):
    """Extract text from parentheses or return filename as is."""
    match = re.search(r'\((.*?)\)', filename)
    if match:
        return match.group(1)
    return filename

def get_time_display(filename):
    """Extract just the time portion from the filename."""
    time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
    if time_match:
        return time_match.group(1)
    return filename

def sanitize_filename(text):
    """Create a safe filename from text while preserving spaces."""
    # First replace unsafe characters with spaces
    safe_text = re.sub(r'[^\w\s-]', ' ', text)
    # Remove any multiple spaces
    safe_text = re.sub(r'\s+', ' ', safe_text)
    # Trim leading/trailing spaces
    safe_text = safe_text.strip()
    return safe_text[:50]  # Limit length to 50 chars

def generate_timestamp_filename(query):
    """Generate filename with format: 1103AM 11032024 (Query).md"""
    # Get current time in Central timezone
    central = pytz.timezone('US/Central')
    current_time = datetime.now(central)
    
    # Format the timestamp parts
    time_str = current_time.strftime("%I%M%p")  # 1103AM format
    date_str = current_time.strftime("%m%d%Y")  # 11032024 format
    
    # Clean up the query for filename - now preserving spaces
    safe_query = sanitize_filename(query)
    
    # Construct filename: "1103AM 11032024 (Input with spaces).md"
    filename = f"{time_str} {date_str} ({safe_query}).md"
    
    return filename

def delete_file(file_path):
    """Delete a file and return success status."""
    try:
        os.remove(file_path)
        return True
    except Exception as e:
        st.error(f"Error deleting file: {e}")
        return False

def save_ai_interaction(query, ai_result, is_rerun=False):
    """Save AI interaction to a markdown file with new filename format."""
    filename = generate_timestamp_filename(query)
    
    # Format the content differently for rerun vs normal query
    if is_rerun:
        content = f"""# Rerun Query
Original file content used for rerun:

{query}

# AI Response (Fun Version)
{ai_result}
"""
    else:
        content = f"""# Query: {query}

## AI Response
{ai_result}
"""
    
    # Save to file
    try:
        with open(filename, 'w', encoding='utf-8') as f:
            f.write(content)
        return filename
    except Exception as e:
        st.error(f"Error saving file: {e}")
        return None

def get_file_download_link(file_path):
    """Generate a base64 download link for a file."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        b64 = base64.b64encode(content.encode()).decode()
        filename = os.path.basename(file_path)
        return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
    except Exception as e:
        st.error(f"Error creating download link: {e}")
        return None

def extract_terms(markdown_text):
    """Parse markdown text and extract terms."""
    lines = markdown_text.strip().split('\n')
    terms = []
    for line in lines:
        line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip()
        if line:
            terms.append(line)
    return terms

def display_terms_with_links(terms):
    """Display terms with various search links."""
    search_urls = {
        "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}",
        "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
    }
    for term in terms:
        links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
        st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True)

def perform_ai_lookup(query):
    """Perform AI lookup using Gradio client."""
    st.write("Performing AI Lookup...")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    result1 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
    st.markdown(result1)
    result2 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mistral-7B-Instruct-v0.2 Result")
    st.markdown(result2)
    combined_result = f"{result1}\n\n{result2}"
    return combined_result

def display_file_content(file_path):
    """Display file content with editing capabilities."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        
        if st.session_state.view_mode == 'view':
            # Display as markdown when viewing
            st.markdown(content)
        else:
            # Edit functionality
            edited_content = st.text_area(
                "Edit content",
                content,
                height=400,
                key=f"edit_{os.path.basename(file_path)}"
            )
            
            if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
                try:
                    with open(file_path, 'w', encoding='utf-8') as f:
                        f.write(edited_content)
                    st.success(f"Successfully saved changes to {file_path}")
                except Exception as e:
                    st.error(f"Error saving changes: {e}")
    except Exception as e:
        st.error(f"Error reading file: {e}")

def file_management_sidebar():
    """Redesigned sidebar with improved layout and additional functionality."""
    st.sidebar.title("๐Ÿ“ File Management")

    # Get list of .md files excluding README.md
    md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
    md_files.sort()
    st.session_state.files = md_files
    
    if md_files:
        st.sidebar.markdown("### Saved Files")
        for idx, file in enumerate(md_files):
            st.sidebar.markdown("---")  # Separator between files
            
            # Display time
            st.sidebar.text(get_time_display(file))
            
            # Display download link with simplified text
            download_link = get_file_download_link(file)
            if download_link:
                st.sidebar.markdown(download_link, unsafe_allow_html=True)
            
            # Action buttons in a row
            col1, col2, col3, col4 = st.sidebar.columns(4)
            
            with col1:
                if st.button("๐Ÿ“„ View", key=f"view_{idx}"):
                    st.session_state.selected_file = file
                    st.session_state.view_mode = 'view'
            
            with col2:
                if st.button("โœ๏ธ Edit", key=f"edit_{idx}"):
                    st.session_state.selected_file = file
                    st.session_state.view_mode = 'edit'
            
            with col3:
                if st.button("๐Ÿ”„ Rerun", key=f"rerun_{idx}"):
                    try:
                        with open(file, 'r', encoding='utf-8') as f:
                            content = f.read()
                            
                        # Prepare the prompt with the prefix
                        rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:

"""
                        full_prompt = rerun_prefix + content
                        
                        # Perform AI lookup and save results
                        ai_result = perform_ai_lookup(full_prompt)
                        saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
                        
                        if saved_file:
                            st.success(f"Created fun version in {saved_file}")
                            st.session_state.selected_file = saved_file
                            st.session_state.view_mode = 'view'
                            
                    except Exception as e:
                        st.error(f"Error during rerun: {e}")
            
            with col4:
                if st.button("๐Ÿ—‘๏ธ Delete", key=f"delete_{idx}"):
                    if delete_file(file):
                        st.success(f"Deleted {file}")
                        st.rerun()
                    else:
                        st.error(f"Failed to delete {file}")

        st.sidebar.markdown("---")
        # Option to create a new markdown file
        if st.sidebar.button("๐Ÿ“ Create New Note"):
            filename = generate_timestamp_filename("New Note")
            with open(filename, 'w', encoding='utf-8') as f:
                f.write("# New Markdown File\n")
            st.sidebar.success(f"Created: {filename}")
            st.session_state.selected_file = filename
            st.session_state.view_mode = 'edit'
    else:
        st.sidebar.write("No markdown files found.")
        if st.sidebar.button("๐Ÿ“ Create First Note"):
            filename = generate_timestamp_filename("New Note")
            with open(filename, 'w', encoding='utf-8') as f:
                f.write("# New Markdown File\n")
            st.sidebar.success(f"Created: {filename}")
            st.session_state.selected_file = filename
            st.session_state.view_mode = 'edit'

def main():
    st.title("AI Knowledge Tree Builder ๐Ÿง ๐ŸŒฑ Cultivate Your AI Mindscape!")

    # Process query parameters and AI lookup first
    query_params = st.query_params
    query = query_params.get('q', '')
    show_initial_content = True  # Flag to control initial content display
    
    # First priority: Handle active query
    if query:
        show_initial_content = False  # Hide initial content when showing query results
        st.write(f"### Search query received: {query}")
        try:
            ai_result = perform_ai_lookup(query)
            
            # Save the interaction
            saved_file = save_ai_interaction(query, ai_result)
            if saved_file:
                st.success(f"Saved interaction to {saved_file}")
                st.session_state.selected_file = saved_file
                st.session_state.view_mode = 'view'
        except Exception as e:
            st.error(f"Error during AI lookup: {e}")

    # File management sidebar
    file_management_sidebar()

    # Second priority: Display selected file content if any
    if st.session_state.selected_file:
        show_initial_content = False  # Hide initial content when showing file content
        if os.path.exists(st.session_state.selected_file):
            st.markdown(f"### Current File: {st.session_state.selected_file}")
            display_file_content(st.session_state.selected_file)
        else:
            st.error("Selected file no longer exists.")
            st.session_state.selected_file = None
            st.rerun()

# Show initial content: Either when first landing or when no interactive elements are active
    if show_initial_content:
        # First show the clickable terms with links
        terms1 = extract_terms(AITopicsToInnovate1)
        terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
        all_terms = terms1 + terms2

        col1, col2, col3, col4 = st.columns(4)
        
        with col1:
            st.markdown("# AI Topics to Innovate With")
            st.markdown(AITopicsToInnovate1)
        with col2:
            st.markdown("# AI Agent Links")
            display_terms_with_links(terms1)
        with col3:
            st.markdown("# Multiplayer Games and MMOs")
            st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
        with col4:
            st.markdown("# Multiplayer Game and MMO Links
            display_terms_with_links(terms2)

if __name__ == "__main__":
    main()