model-evaluator / app.py
lewtun's picture
lewtun HF staff
Add NER and filter for Transformers models
294f139
raw
history blame
3.16 kB
import os
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from utils import get_compatible_models, get_metadata, http_post
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
"multi_label_classification": 3,
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
"single_column_regression": 10,
}
# TODO: remove this hardcorded logic and accept any dataset on the Hub
DATASETS_TO_EVALUATE = ["emotion", "conll2003"]
dataset_name = st.selectbox("Select a dataset", [f"lewtun/autoevaluate__{dset}" for dset in DATASETS_TO_EVALUATE])
with st.form(key="form"):
# TODO: remove this step once we select real datasets
# Strip out original dataset name
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
# In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(dataset_name)
dataset_config = st.selectbox("Select a config", [metadata[0]["config"]])
splits = metadata[0]["splits"]
split_names = list(splits.values())
eval_split = splits.get("eval_split", split_names[0])
selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
col_mapping = metadata[0]["col_mapping"]
col_names = list(col_mapping.values())
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
st.selectbox("This column should contain the text you want to classify", col_names, index=0)
st.selectbox("This column should contain the labels you want to assign to the text", col_names, index=1)
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name)
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models, compatible_models[0])
submit_button = st.form_submit_button("Make Submission")
if submit_button:
for model in selected_models:
payload = {
"username": AUTOTRAIN_USERNAME,
"task": TASK_TO_ID[metadata[0]["task_id"]],
"model": model,
"col_mapping": metadata[0]["col_mapping"],
"split": selected_split,
"dataset": original_dataset_name,
"config": dataset_config,
}
json_resp = http_post(
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
st.success(f"βœ… Successfully submitted model {model} for evaluation with job ID {json_resp['id']}")