Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import streamlit as st | |
from dotenv import load_dotenv | |
from utils import get_compatible_models, get_metadata, http_post | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME") | |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API") | |
TASK_TO_ID = { | |
"binary_classification": 1, | |
"multi_class_classification": 2, | |
"multi_label_classification": 3, | |
"entity_extraction": 4, | |
"extractive_question_answering": 5, | |
"translation": 6, | |
"summarization": 8, | |
"single_column_regression": 10, | |
} | |
# TODO: remove this hardcorded logic and accept any dataset on the Hub | |
DATASETS_TO_EVALUATE = ["emotion", "conll2003"] | |
dataset_name = st.selectbox("Select a dataset", [f"lewtun/autoevaluate__{dset}" for dset in DATASETS_TO_EVALUATE]) | |
with st.form(key="form"): | |
# TODO: remove this step once we select real datasets | |
# Strip out original dataset name | |
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1] | |
# In general this will be a list of multiple configs => need to generalise logic here | |
metadata = get_metadata(dataset_name) | |
dataset_config = st.selectbox("Select a config", [metadata[0]["config"]]) | |
splits = metadata[0]["splits"] | |
split_names = list(splits.values()) | |
eval_split = splits.get("eval_split", split_names[0]) | |
selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split)) | |
col_mapping = metadata[0]["col_mapping"] | |
col_names = list(col_mapping.values()) | |
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself | |
st.markdown("**Map your data columns**") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("`text` column") | |
st.text("") | |
st.text("") | |
st.text("") | |
st.text("") | |
st.markdown("`target` column") | |
with col2: | |
st.selectbox("This column should contain the text you want to classify", col_names, index=0) | |
st.selectbox("This column should contain the labels you want to assign to the text", col_names, index=1) | |
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name) | |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models, compatible_models[0]) | |
submit_button = st.form_submit_button("Make Submission") | |
if submit_button: | |
for model in selected_models: | |
payload = { | |
"username": AUTOTRAIN_USERNAME, | |
"task": TASK_TO_ID[metadata[0]["task_id"]], | |
"model": model, | |
"col_mapping": metadata[0]["col_mapping"], | |
"split": selected_split, | |
"dataset": original_dataset_name, | |
"config": dataset_config, | |
} | |
json_resp = http_post( | |
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API | |
).json() | |
st.success(f"β Successfully submitted model {model} for evaluation with job ID {json_resp['id']}") | |