Spaces:
Runtime error
Runtime error
Add NER and filter for Transformers models
Browse files
app.py
CHANGED
@@ -14,12 +14,24 @@ AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
|
14 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
15 |
|
16 |
|
17 |
-
TASK_TO_ID = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
with st.form(key="form"):
|
20 |
|
21 |
-
dataset_name = st.selectbox("Select a dataset to evaluate on", ["lewtun/autoevaluate__emotion"])
|
22 |
-
|
23 |
# TODO: remove this step once we select real datasets
|
24 |
# Strip out original dataset name
|
25 |
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
@@ -27,13 +39,31 @@ with st.form(key="form"):
|
|
27 |
# In general this will be a list of multiple configs => need to generalise logic here
|
28 |
metadata = get_metadata(dataset_name)
|
29 |
|
30 |
-
dataset_config = st.selectbox("Select
|
31 |
|
32 |
splits = metadata[0]["splits"]
|
33 |
split_names = list(splits.values())
|
34 |
eval_split = splits.get("eval_split", split_names[0])
|
35 |
|
36 |
-
selected_split = st.selectbox("Select
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name)
|
39 |
|
|
|
14 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
15 |
|
16 |
|
17 |
+
TASK_TO_ID = {
|
18 |
+
"binary_classification": 1,
|
19 |
+
"multi_class_classification": 2,
|
20 |
+
"multi_label_classification": 3,
|
21 |
+
"entity_extraction": 4,
|
22 |
+
"extractive_question_answering": 5,
|
23 |
+
"translation": 6,
|
24 |
+
"summarization": 8,
|
25 |
+
"single_column_regression": 10,
|
26 |
+
}
|
27 |
+
|
28 |
+
# TODO: remove this hardcorded logic and accept any dataset on the Hub
|
29 |
+
DATASETS_TO_EVALUATE = ["emotion", "conll2003"]
|
30 |
+
|
31 |
+
dataset_name = st.selectbox("Select a dataset", [f"lewtun/autoevaluate__{dset}" for dset in DATASETS_TO_EVALUATE])
|
32 |
|
33 |
with st.form(key="form"):
|
34 |
|
|
|
|
|
35 |
# TODO: remove this step once we select real datasets
|
36 |
# Strip out original dataset name
|
37 |
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
|
|
39 |
# In general this will be a list of multiple configs => need to generalise logic here
|
40 |
metadata = get_metadata(dataset_name)
|
41 |
|
42 |
+
dataset_config = st.selectbox("Select a config", [metadata[0]["config"]])
|
43 |
|
44 |
splits = metadata[0]["splits"]
|
45 |
split_names = list(splits.values())
|
46 |
eval_split = splits.get("eval_split", split_names[0])
|
47 |
|
48 |
+
selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
49 |
+
|
50 |
+
col_mapping = metadata[0]["col_mapping"]
|
51 |
+
col_names = list(col_mapping.values())
|
52 |
+
|
53 |
+
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
|
54 |
+
st.markdown("**Map your data columns**")
|
55 |
+
col1, col2 = st.columns(2)
|
56 |
+
|
57 |
+
with col1:
|
58 |
+
st.markdown("`text` column")
|
59 |
+
st.text("")
|
60 |
+
st.text("")
|
61 |
+
st.text("")
|
62 |
+
st.text("")
|
63 |
+
st.markdown("`target` column")
|
64 |
+
with col2:
|
65 |
+
st.selectbox("This column should contain the text you want to classify", col_names, index=0)
|
66 |
+
st.selectbox("This column should contain the labels you want to assign to the text", col_names, index=1)
|
67 |
|
68 |
compatible_models = get_compatible_models(metadata[0]["task"], original_dataset_name)
|
69 |
|
utils.py
CHANGED
@@ -32,6 +32,6 @@ def get_metadata(dataset_name):
|
|
32 |
|
33 |
|
34 |
def get_compatible_models(task, dataset_name):
|
35 |
-
filt = ModelFilter(task=task, trained_dataset=dataset_name)
|
36 |
compatible_models = api.list_models(filter=filt)
|
37 |
return [model.modelId for model in compatible_models]
|
|
|
32 |
|
33 |
|
34 |
def get_compatible_models(task, dataset_name):
|
35 |
+
filt = ModelFilter(task=task, trained_dataset=dataset_name, library="transformers")
|
36 |
compatible_models = api.list_models(filter=filt)
|
37 |
return [model.modelId for model in compatible_models]
|