Spaces:
Runtime error
Runtime error
File size: 16,922 Bytes
5ae6c99 0ba78e9 fd18ef6 0ba78e9 0d5e0f7 54f6b18 0ba78e9 1e40fe5 0ba78e9 1e40fe5 9bb22fc 0d5e0f7 79d85b6 675f890 0d5e0f7 0ba78e9 0d5e0f7 0ba78e9 6c14077 0d5e0f7 294f139 d7705b9 294f139 10eada1 294f139 9bb22fc a16df4c 7b6efd3 a16df4c 9bb22fc 72d11c4 9bb22fc 24b0def 5b19fc7 9bb22fc 31b9ddb 2d74fdd 9bb22fc 31b9ddb 9bb22fc 1e40fe5 9bb22fc e8c6d2e 9bb22fc a16df4c 9bb22fc 2d74fdd 9bb22fc a16df4c 9bb22fc 5b19fc7 0779c9b 31b9ddb da19d23 31b9ddb b585c09 31b9ddb 72d11c4 da19d23 294f139 6c14077 d7705b9 31b9ddb d7705b9 f574f70 0d5e0f7 6c14077 24b0def 6c14077 0ba78e9 2859204 0779c9b 5b19fc7 24b0def 5b19fc7 0779c9b 6c14077 0779c9b 6c14077 1e40fe5 5b19fc7 1e40fe5 5b19fc7 6c14077 0779c9b 6c14077 bf0dd52 0779c9b 6c14077 54f6b18 294f139 da19d23 5b19fc7 fd18ef6 54f6b18 fd18ef6 54f6b18 5b19fc7 54f6b18 5b19fc7 54f6b18 0779c9b 54f6b18 5b19fc7 54f6b18 5b19fc7 54f6b18 5b19fc7 54f6b18 5b19fc7 54f6b18 5b19fc7 54f6b18 31b9ddb 54f6b18 fd18ef6 54f6b18 5b19fc7 24b0def 5b19fc7 54f6b18 5b19fc7 24b0def 54f6b18 5b19fc7 24b0def 54f6b18 24b0def 54f6b18 0d5e0f7 72d11c4 7b6efd3 9bb22fc a16df4c faca395 a16df4c 9bb22fc 2d74fdd 9bb22fc a16df4c 31b9ddb 1e40fe5 a16df4c 0d5e0f7 7b6efd3 31b9ddb 5b19fc7 af2acd4 326ac2a af2acd4 31b9ddb 0d5e0f7 fd18ef6 c671908 72d11c4 fd18ef6 c671908 10eada1 c671908 10eada1 c671908 d2c90f3 c671908 fd18ef6 c671908 0779c9b fd18ef6 c671908 fd18ef6 0779c9b fd18ef6 c671908 f417916 c671908 f417916 c671908 675f890 c671908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import inspect
import os
import uuid
from pathlib import Path
import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from evaluate import load
from huggingface_hub import list_datasets, list_metrics
from tqdm import tqdm
from evaluation import filter_evaluated_models
from utils import (
format_col_mapping,
get_compatible_models,
get_key,
get_metadata,
http_get,
http_post,
)
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
# "multi_label_classification": 3, # Not fully supported in AutoTrain
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
}
TASK_TO_DEFAULT_METRICS = {
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
"extractive_question_answering": [],
"translation": ["sacrebleu"],
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
}
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
@st.cache
def get_supported_metrics():
metrics = [metric.id for metric in list_metrics()]
supported_metrics = []
for metric in tqdm(metrics):
# TODO: this currently requires all metric dependencies to be installed
# in the same environment. Refactor to avoid needing to actually load
# the metric.
try:
metric_func = load(metric)
except Exception as e:
print(e)
print("Skipping the following metric, which cannot load:", metric)
continue
argspec = inspect.getfullargspec(metric_func.compute)
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
# We require that "references" and "predictions" are arguments
# to the metric function. We also require that the other arguments
# besides "references" and "predictions" have defaults and so do not
# need to be specified explicitly.
defaults = True
for key, value in argspec.kwonlydefaults.items():
if key not in ("references", "predictions"):
if value is None:
defaults = False
break
if defaults:
supported_metrics.append(metric)
return supported_metrics
supported_metrics = get_supported_metrics()
#######
# APP #
#######
st.title("Evaluation on the Hub")
st.markdown(
"""
Welcome to Hugging Face's automatic model evaluator! This application allows
you to evaluate π€ Transformers
[models](https://huggingface.co/models?library=transformers&sort=downloads)
across a wide variety of datasets on the Hub -- all for free! Please select
the dataset and configuration below. The results of your evaluation will be
displayed on the [public
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
default_dataset = query_params["dataset"][0]
selected_dataset = st.selectbox(
"Select a dataset",
all_datasets,
index=all_datasets.index(default_dataset),
help="Datasets with metadata can be evaluated with 1-click. Check out the [documentation](https://huggingface.co/docs/hub/datasets-cards) to add evaluation metadata to a dataset.",
)
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
metadata = get_metadata(selected_dataset)
print(metadata)
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
# Select task
selected_task = st.selectbox(
"Select a task",
SUPPORTED_TASKS,
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
)
# Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox("Select a config", configs)
# Select splits
splits_resp = http_get(
path="/splits",
domain=DATASETS_PREVIEW_API,
params={"dataset": selected_dataset},
)
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
for split in all_splits["splits"]:
if split["config"] == selected_config:
split_names.append(split["split"])
if metadata is not None:
eval_split = metadata[0]["splits"].get("eval_split", None)
else:
eval_split = None
selected_split = st.selectbox(
"Select a split",
split_names,
index=split_names.index(eval_split) if eval_split is not None else 0,
)
# Select columns
rows_resp = http_get(
path="/rows",
domain=DATASETS_PREVIEW_API,
params={
"dataset": selected_dataset,
"config": selected_config,
"split": selected_split,
},
).json()
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
col_mapping = {}
if selected_task in ["binary_classification", "multi_class_classification"]:
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to classify",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the labels you want to assign to the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "entity_extraction":
with col1:
st.markdown("`tokens` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`tags` column")
with col2:
tokens_col = st.selectbox(
"This column should contain the array of tokens",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
)
tags_col = st.selectbox(
"This column should contain the labels to associate to each part of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
)
col_mapping[tokens_col] = "tokens"
col_mapping[tags_col] = "tags"
elif selected_task == "translation":
with col1:
st.markdown("`source` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to translate",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example translation of the source text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "source"
col_mapping[target_col] = "target"
elif selected_task == "summarization":
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to summarize",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example summarization of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "extractive_question_answering":
if metadata is not None:
col_mapping = metadata[0]["col_mapping"]
# Hub YAML parser converts periods to hyphens, so we remap them here
col_mapping = format_col_mapping(col_mapping)
with col1:
st.markdown("`context` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`question` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.answer_start` column")
with col2:
context_col = st.selectbox(
"This column should contain the question's context",
col_names,
index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0,
)
question_col = st.selectbox(
"This column should contain the question to be answered, given the context",
col_names,
index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0,
)
answers_text_col = st.selectbox(
"This column should contain example answers to the question, extracted from the context",
col_names,
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
)
answers_start_col = st.selectbox(
"This column should contain the indices in the context of the first character of each answers.text",
col_names,
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
)
col_mapping[context_col] = "context"
col_mapping[question_col] = "question"
col_mapping[answers_text_col] = "answers.text"
col_mapping[answers_start_col] = "answers.answer_start"
# Select metrics
st.markdown("**Select metrics**")
st.markdown("The following metrics will be computed")
html_string = " ".join(
[
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
+ 'padding-left:5px;color:white">'
+ metric
+ "</div></div>"
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
]
)
st.markdown(html_string, unsafe_allow_html=True)
selected_metrics = st.multiselect(
"(Optional) Select additional metrics",
list(set(supported_metrics) - set(TASK_TO_DEFAULT_METRICS[selected_task])),
)
st.info(
"""Note: user-selected metrics will be run with their default arguments. \
Check out the [available metrics](https://huggingface.co/metrics) for more details."""
)
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, selected_dataset)
selected_models = st.multiselect(
"Select the models you wish to evaluate",
compatible_models,
help="Don't see your model in this list? Add the dataset and task it was trained to the [model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)",
)
print("Selected models:", selected_models)
if len(selected_models) > 0:
selected_models = filter_evaluated_models(
selected_models,
selected_task,
selected_dataset,
selected_config,
selected_split,
)
print("Selected models:", selected_models)
submit_button = st.form_submit_button("Evaluate models")
if submit_button:
if len(selected_models) > 0:
project_id = str(uuid.uuid4())[:8]
payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": f"eval-project-{project_id}",
"task": TASK_TO_ID[selected_task],
"config": {
"language": "en"
if selected_task != "translation"
else "en2de", # Need this dummy pair to enable translation
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"evaluation": {
"metrics": selected_metrics,
"models": selected_models,
},
},
}
print(f"Payload: {payload}")
project_json_resp = http_post(
path="/projects/create",
payload=payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(project_json_resp)
if project_json_resp["created"]:
payload = {
"split": 4, # use "auto" split choice in AutoTrain
"col_mapping": col_mapping,
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
payload=payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={
"type": "dataset",
"config_name": selected_config,
"split_name": selected_split,
},
).json()
print(data_json_resp)
if data_json_resp["download_status"] == 1:
train_json_resp = http_get(
path=f"/projects/{project_json_resp['id']}/data/start_process",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(train_json_resp)
if train_json_resp["success"]:
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
st.markdown(
f"""
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
π Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) \
to view the results from your submission
"""
)
else:
st.error("π Oh no, there was an error submitting your evaluation job!")
else:
st.warning("β οΈ No models were selected for evaluation!")
|