File size: 21,686 Bytes
18dd6ad
 
5a19940
18dd6ad
 
 
81dfede
18dd6ad
bacbc79
5dcbd7d
a37d784
1b893bd
01ad35f
 
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f5abe
18dd6ad
 
62f5abe
 
 
 
 
 
 
 
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
ec681ea
18dd6ad
ec681ea
 
 
 
 
 
 
 
18dd6ad
ec681ea
 
18dd6ad
ec681ea
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
cc789d9
18dd6ad
 
 
 
 
 
cc789d9
6611382
cc789d9
6611382
18dd6ad
 
 
 
 
 
05ff922
18dd6ad
 
 
 
 
 
aee7150
05ff922
aee7150
05ff922
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a19940
 
 
 
 
8cd6c25
f9acc01
0215d3c
8cd6c25
0215d3c
 
8cd6c25
0215d3c
 
 
01ad35f
18dd6ad
85eaf41
527a04e
364ea41
26ed789
527a04e
85eaf41
ef86c66
 
 
 
 
 
6adc725
ef86c66
 
fdd939c
18dd6ad
 
 
 
 
 
3c6afb3
23f6cc9
18dd6ad
 
 
0c4a2c8
 
18dd6ad
c4e4f1d
 
18dd6ad
 
5a19940
 
58aef59
5a19940
 
26ed789
01ad35f
 
59228af
23f6cc9
5a19940
 
0c4a2c8
 
5a19940
c4e4f1d
01ad35f
5a19940
 
a8cd162
18dd6ad
2bed78c
18dd6ad
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
46cc445
 
18dd6ad
a8cd162
18dd6ad
2bed78c
18dd6ad
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
 
 
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
 
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
62f5abe
 
 
 
3c6afb3
23f6cc9
62f5abe
0c4a2c8
 
62f5abe
c4e4f1d
a87b051
 
18dd6ad
ec681ea
 
 
 
 
3c6afb3
23f6cc9
ec681ea
0c4a2c8
 
ec681ea
c4e4f1d
a87b051
 
ec681ea
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
 
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
15e00d8
18dd6ad
 
3c6afb3
23f6cc9
cc789d9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
15e00d8
18dd6ad
 
3c6afb3
23f6cc9
18dd6ad
05ff922
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
46cc445
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
a8cd162
18dd6ad
 
 
 
3c6afb3
23f6cc9
18dd6ad
0c4a2c8
 
18dd6ad
c4e4f1d
a87b051
 
18dd6ad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import gradio as gr
import cv2
import numpy as np

from annotator.util import resize_image, HWC3


DESCRIPTION = '# ControlNet v1.1 Annotators (that runs on cpu only)'
DESCRIPTION += '\n<p>This app generates Control Image for Mochi Diffusion&apos;s ControlNet.</p>'
DESCRIPTION += '\n<p>HEIC image is not converted. Please use PNG or JPG image.</p>'
DESCRIPTION += '\n<p>Gradioのバージョンが上がって変換された画像がWebpになっています。最新のMochiDiffusionでは問題なく使えるようです。</p>'
DESCRIPTION += '\n<p>Safariではドラッグ&ドロップで画像をアップロードすることができませんので、クリックしてアップロードをご利用ください。</p>'
#DESCRIPTION += '\n<p>The version of Gradio has been upgraded and the converted images are now Webp. It seems to be usable with the latest MochiDiffusion without any problems.</p>'
#DESCRIPTION += '\n<p>If you are using Safari, you cannot upload images by drag and drop, so please use the upload button.</p>'


model_canny = None


def canny(img, res, l, h):
    img = resize_image(HWC3(img), res)
    global model_canny
    if model_canny is None:
        from annotator.canny import CannyDetector
        model_canny = CannyDetector()
    result = model_canny(img, l, h)
    return [result]


model_hed = None


def hed(img, res):
    img = resize_image(HWC3(img), res)
    global model_hed
    if model_hed is None:
        from annotator.hed import HEDdetector
        model_hed = HEDdetector()
    result = model_hed(img)
    return [result]


model_pidi = None


def pidi(img, res):
    img = resize_image(HWC3(img), res)
    global model_pidi
    if model_pidi is None:
        from annotator.pidinet import PidiNetDetector
        model_pidi = PidiNetDetector()
    result = model_pidi(img)
    return [result]


model_mlsd = None


def mlsd(img, res, thr_v, thr_d):
    img = resize_image(HWC3(img), res)
    global model_mlsd
    if model_mlsd is None:
        from annotator.mlsd import MLSDdetector
        model_mlsd = MLSDdetector()
    result = model_mlsd(img, thr_v, thr_d)
    return [result]


model_midas = None


def midas(img, res):
    img = resize_image(HWC3(img), res)
    global model_midas
    if model_midas is None:
        from annotator.midas import MidasDetector
        model_midas = MidasDetector()
    result = model_midas(img)
    return [result]


model_zoe = None


def zoe(img, res):
    img = resize_image(HWC3(img), res)
    global model_zoe
    if model_zoe is None:
        from annotator.zoe import ZoeDetector
        model_zoe = ZoeDetector()
    result = model_zoe(img)
    return [result]


model_normalbae = None


def normalbae(img, res):
    img = resize_image(HWC3(img), res)
    global model_normalbae
    if model_normalbae is None:
        from annotator.normalbae import NormalBaeDetector
        model_normalbae = NormalBaeDetector()
    result = model_normalbae(img)
    return [result]


model_openpose = None


def openpose(img, res, hand_and_face):
    img = resize_image(HWC3(img), res)
    global model_openpose
    if model_openpose is None:
        from annotator.openpose import OpenposeDetector
        model_openpose = OpenposeDetector()
    result = model_openpose(img, hand_and_face)
    return [result]

model_dwpose = None

def dwpose(img, res):
    img = resize_image(HWC3(img), res)
    global model_dwpose
    if model_dwpose is None:
        from annotator.dwpose import DWposeDetector
        model_dwpose = DWposeDetector()
    result = model_dwpose(img)
    return [result]

    
#model_uniformer = None

    
#def uniformer(img, res):
#    img = resize_image(HWC3(img), res)
#    global model_uniformer
#    if model_uniformer is None:
#        from annotator.uniformer import UniformerDetector
#        model_uniformer = UniformerDetector()
#    result = model_uniformer(img)
#    return [result]


model_lineart_anime = None


def lineart_anime(img, res, invert=True):
    img = resize_image(HWC3(img), res)
    global model_lineart_anime
    if model_lineart_anime is None:
        from annotator.lineart_anime import LineartAnimeDetector
        model_lineart_anime = LineartAnimeDetector()
#    result = model_lineart_anime(img)
    if (invert):
        result = cv2.bitwise_not(model_lineart_anime(img))
    else:
        result = model_lineart_anime(img)
    return [result]


model_lineart = None


def lineart(img, res, coarse=False, invert=True):
    img = resize_image(HWC3(img), res)
    global model_lineart
    if model_lineart is None:
        from annotator.lineart import LineartDetector
        model_lineart = LineartDetector()
#    result = model_lineart(img, coarse)
    if (invert):
        result = cv2.bitwise_not(model_lineart(img, coarse))
    else:
        result = model_lineart(img, coarse)    
    return [result]


model_oneformer_coco = None


def oneformer_coco(img, res):
    img = resize_image(HWC3(img), res)
    global model_oneformer_coco
    if model_oneformer_coco is None:
        from annotator.oneformer import OneformerCOCODetector
        model_oneformer_coco = OneformerCOCODetector()
    result = model_oneformer_coco(img)
    return [result]


model_oneformer_ade20k = None


def oneformer_ade20k(img, res):
    img = resize_image(HWC3(img), res)
    global model_oneformer_ade20k
    if model_oneformer_ade20k is None:
        from annotator.oneformer import OneformerADE20kDetector
        model_oneformer_ade20k = OneformerADE20kDetector()
    result = model_oneformer_ade20k(img)
    return [result]


model_content_shuffler = None


def content_shuffler(img, res):
    img = resize_image(HWC3(img), res)
    global model_content_shuffler
    if model_content_shuffler is None:
        from annotator.shuffle import ContentShuffleDetector
        model_content_shuffler = ContentShuffleDetector()
    result = model_content_shuffler(img)
    return [result]


model_color_shuffler = None


def color_shuffler(img, res):
    img = resize_image(HWC3(img), res)
    global model_color_shuffler
    if model_color_shuffler is None:
        from annotator.shuffle import ColorShuffleDetector
        model_color_shuffler = ColorShuffleDetector()
    result = model_color_shuffler(img)
    return [result]

model_inpaint = None


def inpaint(image, invert):
#    image = resize_image(img, res)
#    color = HWC3(image["image"])
    color = HWC3(image["background"])
    if(invert):
#        alpha = image["mask"][:, :, 0:1]
        alpha = image["layers"][0][:, :, 3:]
    else:
#        alpha = 255 - image["mask"][:, :, 0:1]
        alpha = 255 - image["layers"][0][:, :, 3:]
    result = np.concatenate([color, alpha], axis=2)
    return [result]



#def predict(im):
#    return im["composite"]
#    return im["inputmask"] # bad
#    return im["layers"][0]

custom_theme = gr.themes.Soft(primary_hue="blue").set(
                button_secondary_background_fill="*neutral_100",
                button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
    text-align: center; /* Horizontally center the content */
}'''


block = gr.Blocks(theme=custom_theme, css=custom_css).queue()

with block:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        gr.Markdown("## Canny Edge")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
            high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Inpaint \n<p>画像はツールのUpload buttonを押してアップロードして下さい。")
    with gr.Row():
        with gr.Column():
            input_image = gr.ImageMask(sources="upload", type="numpy", height="auto")
#            im_preview = gr.Image()
#            input_image.change(predict, outputs=im_preview, inputs=input_image, show_progress="hidden")
#            input_image = gr.ImageEditor(sources="upload", type="numpy", height="auto", layers="False", brush=gr.Brush(colors=["#000000"]))
#            input_image = gr.Image(source='upload', type="numpy", tool="sketch", height=512)
#            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            invert = gr.Checkbox(label='Invert Mask', value=False)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=inpaint, inputs=[input_image, invert], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## HED Edge&nbsp;&quot;SoftEdge&quot;")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Pidi Edge&nbsp;&quot;SoftEdge&quot;")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=pidi, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## MLSD Edge")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
            distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## MIDAS Depth")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=midas, inputs=[input_image, resolution], outputs=[gallery])


    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Zoe Depth")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=zoe, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Normal Bae")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=normalbae, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## DWPose")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=dwpose, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Openpose")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=openpose, inputs=[input_image, resolution, hand_and_face], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            invert = gr.Checkbox(label='Invert', value=True)
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=lineart_anime, inputs=[input_image, resolution, invert], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion.  Inverted image can also be created here for use with ControlNet Scribble.")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            coarse = gr.Checkbox(label='Using coarse model', value=False)
            invert = gr.Checkbox(label='Invert', value=True)
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=lineart, inputs=[input_image, resolution, coarse, invert], outputs=[gallery])

#    with gr.Row():
#        gr.Markdown("## Uniformer Segmentation")
#    with gr.Row():
#        with gr.Column():
#            input_image = gr.Image(source='upload', type="numpy")
#            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
#            run_button = gr.Button(label="Run")
#        with gr.Column():
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
#    run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Oneformer COCO Segmentation")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=oneformer_coco, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Oneformer ADE20K Segmentation")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=oneformer_ade20k, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Content Shuffle")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
    run_button.click(fn=content_shuffler, inputs=[input_image, resolution], outputs=[gallery])

    gr.Markdown("<hr>")
    with gr.Row():
        gr.Markdown("## Color Shuffle")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy", height=480)
#            input_image = gr.Image(source='upload', type="numpy")
            resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
            run_button = gr.Button("Run")
#            run_button = gr.Button(label="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Generated images", show_label=False, height="auto")
#            gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
            run_button.click(fn=color_shuffler, inputs=[input_image, resolution], outputs=[gallery])


block.launch(server_name='0.0.0.0')