atatakun commited on
Commit
3c6afb3
·
verified ·
1 Parent(s): a87b051

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -242,7 +242,7 @@ with block:
242
  gr.Markdown("## Canny Edge")
243
  with gr.Row():
244
  with gr.Column():
245
- input_image = gr.Image.upload(type="numpy")
246
  # input_image = gr.Image(source='upload', type="numpy")
247
  low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
248
  high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
@@ -276,7 +276,7 @@ with block:
276
  gr.Markdown("## HED Edge "SoftEdge"")
277
  with gr.Row():
278
  with gr.Column():
279
- input_image = gr.Image.upload(type="numpy")
280
  # input_image = gr.Image(source='upload', type="numpy")
281
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
282
  run_button = gr.Button("Run")
@@ -290,7 +290,7 @@ with block:
290
  gr.Markdown("## Pidi Edge "SoftEdge"")
291
  with gr.Row():
292
  with gr.Column():
293
- input_image = gr.Image.upload(type="numpy")
294
  # input_image = gr.Image(source='upload', type="numpy")
295
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
296
  run_button = gr.Button("Run")
@@ -305,7 +305,7 @@ with block:
305
  gr.Markdown("## MLSD Edge")
306
  with gr.Row():
307
  with gr.Column():
308
- input_image = gr.Image.upload(type="numpy")
309
  # input_image = gr.Image(source='upload', type="numpy")
310
  value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
311
  distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
@@ -322,7 +322,7 @@ with block:
322
  gr.Markdown("## MIDAS Depth")
323
  with gr.Row():
324
  with gr.Column():
325
- input_image = gr.Image.upload(type="numpy")
326
  # input_image = gr.Image(source='upload', type="numpy")
327
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
328
  run_button = gr.Button("Run")
@@ -338,7 +338,7 @@ with block:
338
  gr.Markdown("## Zoe Depth")
339
  with gr.Row():
340
  with gr.Column():
341
- input_image = gr.Image.upload(type="numpy")
342
  # input_image = gr.Image(source='upload', type="numpy")
343
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
344
  run_button = gr.Button("Run")
@@ -353,7 +353,7 @@ with block:
353
  gr.Markdown("## Normal Bae")
354
  with gr.Row():
355
  with gr.Column():
356
- input_image = gr.Image.upload(type="numpy")
357
  # input_image = gr.Image(source='upload', type="numpy")
358
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
359
  run_button = gr.Button("Run")
@@ -368,7 +368,7 @@ with block:
368
  gr.Markdown("## DWPose")
369
  with gr.Row():
370
  with gr.Column():
371
- input_image = gr.Image.upload(type="numpy")
372
  # input_image = gr.Image(source='upload', type="numpy")
373
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
374
  run_button = gr.Button("Run")
@@ -383,7 +383,7 @@ with block:
383
  gr.Markdown("## Openpose")
384
  with gr.Row():
385
  with gr.Column():
386
- input_image = gr.Image.upload(type="numpy")
387
  # input_image = gr.Image(source='upload', type="numpy")
388
  hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
389
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
@@ -399,7 +399,7 @@ with block:
399
  gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
400
  with gr.Row():
401
  with gr.Column():
402
- input_image = gr.Image.upload(type="numpy")
403
  # input_image = gr.Image(source='upload', type="numpy")
404
  invert = gr.Checkbox(label='Invert', value=True)
405
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
@@ -415,7 +415,7 @@ with block:
415
  gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion. Inverted image can also be created here for use with ControlNet Scribble.")
416
  with gr.Row():
417
  with gr.Column():
418
- input_image = gr.Image.upload(type="numpy")
419
  # input_image = gr.Image(source='upload', type="numpy")
420
  coarse = gr.Checkbox(label='Using coarse model', value=False)
421
  invert = gr.Checkbox(label='Invert', value=True)
@@ -443,7 +443,7 @@ with block:
443
  gr.Markdown("## Oneformer COCO Segmentation")
444
  with gr.Row():
445
  with gr.Column():
446
- input_image = gr.Image.upload(type="numpy")
447
  # input_image = gr.Image(source='upload', type="numpy")
448
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
449
  run_button = gr.Button("Run")
@@ -458,7 +458,7 @@ with block:
458
  gr.Markdown("## Oneformer ADE20K Segmentation")
459
  with gr.Row():
460
  with gr.Column():
461
- input_image = gr.Image.upload(type="numpy")
462
  # input_image = gr.Image(source='upload', type="numpy")
463
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
464
  run_button = gr.Button("Run")
@@ -472,7 +472,7 @@ with block:
472
  gr.Markdown("## Content Shuffle")
473
  with gr.Row():
474
  with gr.Column():
475
- input_image = gr.Image.upload(type="numpy")
476
  # input_image = gr.Image(source='upload', type="numpy")
477
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
478
  run_button = gr.Button("Run")
@@ -487,7 +487,7 @@ with block:
487
  gr.Markdown("## Color Shuffle")
488
  with gr.Row():
489
  with gr.Column():
490
- input_image = gr.Image.upload(type="numpy")
491
  # input_image = gr.Image(source='upload', type="numpy")
492
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
493
  run_button = gr.Button("Run")
 
242
  gr.Markdown("## Canny Edge")
243
  with gr.Row():
244
  with gr.Column():
245
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
246
  # input_image = gr.Image(source='upload', type="numpy")
247
  low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
248
  high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
 
276
  gr.Markdown("## HED Edge&nbsp;&quot;SoftEdge&quot;")
277
  with gr.Row():
278
  with gr.Column():
279
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
280
  # input_image = gr.Image(source='upload', type="numpy")
281
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
282
  run_button = gr.Button("Run")
 
290
  gr.Markdown("## Pidi Edge&nbsp;&quot;SoftEdge&quot;")
291
  with gr.Row():
292
  with gr.Column():
293
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
294
  # input_image = gr.Image(source='upload', type="numpy")
295
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
296
  run_button = gr.Button("Run")
 
305
  gr.Markdown("## MLSD Edge")
306
  with gr.Row():
307
  with gr.Column():
308
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
309
  # input_image = gr.Image(source='upload', type="numpy")
310
  value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
311
  distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
 
322
  gr.Markdown("## MIDAS Depth")
323
  with gr.Row():
324
  with gr.Column():
325
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
326
  # input_image = gr.Image(source='upload', type="numpy")
327
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
328
  run_button = gr.Button("Run")
 
338
  gr.Markdown("## Zoe Depth")
339
  with gr.Row():
340
  with gr.Column():
341
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
342
  # input_image = gr.Image(source='upload', type="numpy")
343
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
344
  run_button = gr.Button("Run")
 
353
  gr.Markdown("## Normal Bae")
354
  with gr.Row():
355
  with gr.Column():
356
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
357
  # input_image = gr.Image(source='upload', type="numpy")
358
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
359
  run_button = gr.Button("Run")
 
368
  gr.Markdown("## DWPose")
369
  with gr.Row():
370
  with gr.Column():
371
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
372
  # input_image = gr.Image(source='upload', type="numpy")
373
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
374
  run_button = gr.Button("Run")
 
383
  gr.Markdown("## Openpose")
384
  with gr.Row():
385
  with gr.Column():
386
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
387
  # input_image = gr.Image(source='upload', type="numpy")
388
  hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
389
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
 
399
  gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
400
  with gr.Row():
401
  with gr.Column():
402
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
403
  # input_image = gr.Image(source='upload', type="numpy")
404
  invert = gr.Checkbox(label='Invert', value=True)
405
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
 
415
  gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion. Inverted image can also be created here for use with ControlNet Scribble.")
416
  with gr.Row():
417
  with gr.Column():
418
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
419
  # input_image = gr.Image(source='upload', type="numpy")
420
  coarse = gr.Checkbox(label='Using coarse model', value=False)
421
  invert = gr.Checkbox(label='Invert', value=True)
 
443
  gr.Markdown("## Oneformer COCO Segmentation")
444
  with gr.Row():
445
  with gr.Column():
446
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
447
  # input_image = gr.Image(source='upload', type="numpy")
448
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
449
  run_button = gr.Button("Run")
 
458
  gr.Markdown("## Oneformer ADE20K Segmentation")
459
  with gr.Row():
460
  with gr.Column():
461
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
462
  # input_image = gr.Image(source='upload', type="numpy")
463
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
464
  run_button = gr.Button("Run")
 
472
  gr.Markdown("## Content Shuffle")
473
  with gr.Row():
474
  with gr.Column():
475
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
476
  # input_image = gr.Image(source='upload', type="numpy")
477
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
478
  run_button = gr.Button("Run")
 
487
  gr.Markdown("## Color Shuffle")
488
  with gr.Row():
489
  with gr.Column():
490
+ input_image = gr.Image(label="Input Image", type="numpy", height=480)
491
  # input_image = gr.Image(source='upload', type="numpy")
492
  resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
493
  run_button = gr.Button("Run")