asahi417's picture
Upload folder using huggingface_hub
89f7a7c verified
raw
history blame
3.58 kB
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
import spaces
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
if torch.cuda.is_available():
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to("cuda")
else:
pipe = StableDiffusion3Pipeline.from_pretrained(repo)
max_seed = np.iinfo(np.int32).max
max_image_size = 1344
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, max_seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=torch.Generator().manual_seed(seed)
).images[0]
return image, seed
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=max_seed,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=max_image_size,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=max_image_size,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=5,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()