asahi417 commited on
Commit
89f7a7c
1 Parent(s): 55e4f3c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +32 -59
app.py CHANGED
@@ -11,54 +11,41 @@ if torch.cuda.is_available():
11
  pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to("cuda")
12
  else:
13
  pipe = StableDiffusion3Pipeline.from_pretrained(repo)
14
-
15
- MAX_SEED = np.iinfo(np.int32).max
16
- MAX_IMAGE_SIZE = 1344
17
-
18
-
19
- @spaces.GPU
20
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
21
-
22
- if randomize_seed:
23
- seed = random.randint(0, MAX_SEED)
24
-
25
- generator = torch.Generator().manual_seed(seed)
26
-
27
- image = pipe(
28
- prompt = prompt,
29
- negative_prompt = negative_prompt,
30
- guidance_scale = guidance_scale,
31
- num_inference_steps = num_inference_steps,
32
- width = width,
33
- height = height,
34
- generator = generator
35
- ).images[0]
36
-
37
- return image, seed
38
-
39
  examples = [
40
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
41
  "An astronaut riding a green horse",
42
  "A delicious ceviche cheesecake slice",
43
  ]
44
-
45
- css="""
46
  #col-container {
47
  margin: 0 auto;
48
  max-width: 580px;
49
  }
50
  """
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  with gr.Blocks(css=css) as demo:
53
-
54
  with gr.Column(elem_id="col-container"):
55
- gr.Markdown(f"""
56
- # Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
57
- Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
58
- """)
59
-
60
  with gr.Row():
61
-
62
  prompt = gr.Text(
63
  label="Prompt",
64
  show_label=False,
@@ -66,57 +53,45 @@ with gr.Blocks(css=css) as demo:
66
  placeholder="Enter your prompt",
67
  container=False,
68
  )
69
-
70
  run_button = gr.Button("Run", scale=0)
71
-
72
  result = gr.Image(label="Result", show_label=False)
73
-
74
  with gr.Accordion("Advanced Settings", open=False):
75
-
76
  negative_prompt = gr.Text(
77
- label="Negative prompt",
78
  max_lines=1,
79
  placeholder="Enter a negative prompt",
80
  )
81
-
82
  seed = gr.Slider(
83
  label="Seed",
84
  minimum=0,
85
- maximum=MAX_SEED,
86
  step=1,
87
  value=0,
88
  )
89
-
90
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
91
-
92
  with gr.Row():
93
-
94
  width = gr.Slider(
95
  label="Width",
96
  minimum=256,
97
- maximum=MAX_IMAGE_SIZE,
98
  step=64,
99
  value=1024,
100
  )
101
-
102
  height = gr.Slider(
103
  label="Height",
104
  minimum=256,
105
- maximum=MAX_IMAGE_SIZE,
106
  step=64,
107
  value=1024,
108
  )
109
-
110
  with gr.Row():
111
-
112
  guidance_scale = gr.Slider(
113
  label="Guidance scale",
114
  minimum=0.0,
115
  maximum=10.0,
116
  step=0.1,
117
- value=5.0,
118
  )
119
-
120
  num_inference_steps = gr.Slider(
121
  label="Number of inference steps",
122
  minimum=1,
@@ -124,16 +99,14 @@ with gr.Blocks(css=css) as demo:
124
  step=1,
125
  value=5,
126
  )
127
-
128
  gr.Examples(
129
- examples = examples,
130
- inputs = [prompt]
131
  )
132
  gr.on(
133
  triggers=[run_button.click, prompt.submit, negative_prompt.submit],
134
- fn = infer,
135
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- outputs = [result, seed]
137
  )
138
-
139
- demo.launch()
 
11
  pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to("cuda")
12
  else:
13
  pipe = StableDiffusion3Pipeline.from_pretrained(repo)
14
+ max_seed = np.iinfo(np.int32).max
15
+ max_image_size = 1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  examples = [
17
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
18
  "An astronaut riding a green horse",
19
  "A delicious ceviche cheesecake slice",
20
  ]
21
+ css = """
 
22
  #col-container {
23
  margin: 0 auto;
24
  max-width: 580px;
25
  }
26
  """
27
 
28
+
29
+ @spaces.GPU
30
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
31
+ if randomize_seed:
32
+ seed = random.randint(0, max_seed)
33
+ image = pipe(
34
+ prompt=prompt,
35
+ negative_prompt=negative_prompt,
36
+ guidance_scale=guidance_scale,
37
+ num_inference_steps=num_inference_steps,
38
+ width=width,
39
+ height=height,
40
+ generator=torch.Generator().manual_seed(seed)
41
+ ).images[0]
42
+ return image, seed
43
+
44
+
45
  with gr.Blocks(css=css) as demo:
 
46
  with gr.Column(elem_id="col-container"):
47
+ gr.Markdown("# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)")
 
 
 
 
48
  with gr.Row():
 
49
  prompt = gr.Text(
50
  label="Prompt",
51
  show_label=False,
 
53
  placeholder="Enter your prompt",
54
  container=False,
55
  )
 
56
  run_button = gr.Button("Run", scale=0)
 
57
  result = gr.Image(label="Result", show_label=False)
 
58
  with gr.Accordion("Advanced Settings", open=False):
 
59
  negative_prompt = gr.Text(
60
+ label="Negative Prompt",
61
  max_lines=1,
62
  placeholder="Enter a negative prompt",
63
  )
 
64
  seed = gr.Slider(
65
  label="Seed",
66
  minimum=0,
67
+ maximum=max_seed,
68
  step=1,
69
  value=0,
70
  )
 
71
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
72
  with gr.Row():
 
73
  width = gr.Slider(
74
  label="Width",
75
  minimum=256,
76
+ maximum=max_image_size,
77
  step=64,
78
  value=1024,
79
  )
 
80
  height = gr.Slider(
81
  label="Height",
82
  minimum=256,
83
+ maximum=max_image_size,
84
  step=64,
85
  value=1024,
86
  )
 
87
  with gr.Row():
 
88
  guidance_scale = gr.Slider(
89
  label="Guidance scale",
90
  minimum=0.0,
91
  maximum=10.0,
92
  step=0.1,
93
+ value=7.5,
94
  )
 
95
  num_inference_steps = gr.Slider(
96
  label="Number of inference steps",
97
  minimum=1,
 
99
  step=1,
100
  value=5,
101
  )
 
102
  gr.Examples(
103
+ examples=examples,
104
+ inputs=[prompt]
105
  )
106
  gr.on(
107
  triggers=[run_button.click, prompt.submit, negative_prompt.submit],
108
+ fn=infer,
109
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
110
+ outputs=[result, seed]
111
  )
112
+ demo.launch()