Spaces:
Sleeping
Sleeping
File size: 5,071 Bytes
8ea927a 410031a 41813c2 8ea927a 410031a 8ea927a 410031a 77f6b05 2fce835 e6f14fa b31a1e4 9ec289c b31a1e4 9ec289c b31a1e4 359b1cb 8ea927a 9ec289c 2fce835 77f6b05 2fce835 410031a 77f6b05 9ec289c 77f6b05 9ec289c 410031a 77f6b05 2fce835 410031a 41813c2 410031a 2fce835 41813c2 8ea927a 9ec289c 410031a 9ec289c 4cc95b5 9ec289c 8ea927a 2fce835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
def generate_knowledge_graph(api_key, user_input):
openai.api_key = api_key
# Chamar a API da OpenAI
print("Chamando a API da OpenAI...")
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
},
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
]
)
response_data = completion.choices[0]["message"]["function_results"]["knowledge_graph"]
print(response_data)
# Visualizar o conhecimento usando Graphviz
print("Gerando o conhecimento usando Graphviz...")
dot = Digraph(comment="Knowledge Graph")
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
# Renderizar para o formato PNG
print("Renderizando o gráfico para o formato PNG...")
dot.format = "png"
image_data = dot.pipe(format="png")
image = Image.open(io.BytesIO(image_data))
print("Gráfico gerado com sucesso!")
return image
iface = gr.Interface(
fn=generate_knowledge_graph,
inputs=[
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
gr.inputs.Textbox(label="User Input for Graph"),
],
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
live=False,
)
print("Iniciando a interface Gradio...")
iface.launch() |