artificialguybr commited on
Commit
9ec289c
·
1 Parent(s): c2e3851

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -24
app.py CHANGED
@@ -8,37 +8,92 @@ def generate_knowledge_graph(api_key, user_input):
8
 
9
  # Chamar a API da OpenAI
10
  print("Chamando a API da OpenAI...")
11
- completion = openai.ChatCompletion.create(
12
  model="gpt-3.5-turbo-16k",
13
  messages=[
 
14
  {
15
  "role": "user",
16
  "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  }
18
- ]
 
19
  )
20
- raw_response = completion.choices[0].message.to_dict()
21
- print("Resposta bruta da API:")
22
- print(raw_response)
23
-
24
- # Verificar se a resposta contém conteúdo
25
- if 'content' in raw_response and raw_response['content']:
26
- try:
27
- response_data = json.loads(raw_response['content'])
28
- except json.JSONDecodeError:
29
- print("Erro ao decodificar o JSON.")
30
- return "Erro ao decodificar o JSON."
31
- else:
32
- print("Resposta da API vazia ou inválida.")
33
- return "Resposta da API vazia ou inválida."
34
 
35
  # Visualizar o conhecimento usando Graphviz
36
  print("Gerando o conhecimento usando Graphviz...")
37
  dot = Digraph(comment="Knowledge Graph")
38
  for node in response_data.get("nodes", []):
39
- dot.node(node["id"], f"{node['label']} ({node['type']})")
40
  for edge in response_data.get("edges", []):
41
- dot.edge(edge["from"], edge["to"], label=edge["relationship"])
42
 
43
  # Renderizar para o formato PNG
44
  print("Renderizando o gráfico para o formato PNG...")
@@ -50,13 +105,13 @@ def generate_knowledge_graph(api_key, user_input):
50
  return "knowledge_graph.png"
51
 
52
  iface = gr.Interface(
53
- fn=generate_knowledge_graph,
54
  inputs=[
55
- gr.components.Textbox(label="OpenAI API Key", type="password"),
56
- gr.components.Textbox(label="User Input for Graph")
57
- ],
58
- outputs=gr.components.Image(type="filepath", label="Generated Knowledge Graph"),
59
- live=False
60
  )
61
 
62
  print("Iniciando a interface Gradio...")
 
8
 
9
  # Chamar a API da OpenAI
10
  print("Chamando a API da OpenAI...")
11
+ completion = openai.Completion.create(
12
  model="gpt-3.5-turbo-16k",
13
  messages=[
14
+ {"role": "system", "content": "You are a helpful assistant."},
15
  {
16
  "role": "user",
17
  "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
18
+ },
19
+ ],
20
+ functions=[
21
+ {
22
+ "name": "knowledge_graph",
23
+ "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
24
+ "parameters": {
25
+ "type": "object",
26
+ "properties": {
27
+ "metadata": {
28
+ "type": "object",
29
+ "properties": {
30
+ "createdDate": {"type": "string"},
31
+ "lastUpdated": {"type": "string"},
32
+ "description": {"type": "string"},
33
+ },
34
+ },
35
+ "nodes": {
36
+ "type": "array",
37
+ "items": {
38
+ "type": "object",
39
+ "properties": {
40
+ "id": {"type": "string"},
41
+ "label": {"type": "string"},
42
+ "type": {"type": "string"},
43
+ "color": {"type": "string"}, # Added color property
44
+ "properties": {
45
+ "type": "object",
46
+ "description": "Additional attributes for the node",
47
+ },
48
+ },
49
+ "required": [
50
+ "id",
51
+ "label",
52
+ "type",
53
+ "color",
54
+ ], # Added color to required
55
+ },
56
+ },
57
+ "edges": {
58
+ "type": "array",
59
+ "items": {
60
+ "type": "object",
61
+ "properties": {
62
+ "from": {"type": "string"},
63
+ "to": {"type": "string"},
64
+ "relationship": {"type": "string"},
65
+ "direction": {"type": "string"},
66
+ "color": {"type": "string"}, # Added color property
67
+ "properties": {
68
+ "type": "object",
69
+ "description": "Additional attributes for the edge",
70
+ },
71
+ },
72
+ "required": [
73
+ "from",
74
+ "to",
75
+ "relationship",
76
+ "color",
77
+ ], # Added color to required
78
+ },
79
+ },
80
+ },
81
+ "required": ["nodes", "edges"],
82
+ },
83
  }
84
+ ],
85
+ response_format="json",
86
  )
87
+ response_data = completion.choices[0]["message"]["function_results"]["knowledge_graph"]
88
+ print(response_data)
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  # Visualizar o conhecimento usando Graphviz
91
  print("Gerando o conhecimento usando Graphviz...")
92
  dot = Digraph(comment="Knowledge Graph")
93
  for node in response_data.get("nodes", []):
94
+ dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
95
  for edge in response_data.get("edges", []):
96
+ dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
97
 
98
  # Renderizar para o formato PNG
99
  print("Renderizando o gráfico para o formato PNG...")
 
105
  return "knowledge_graph.png"
106
 
107
  iface = gr.Interface(
108
+ fn=generate_knowledge_graph,
109
  inputs=[
110
+ gr.inputs.Textbox(label="OpenAI API Key", type="password"),
111
+ gr.inputs.Textbox(label="User Input for Graph"),
112
+ ],
113
+ outputs=gr.outputs.Image(type="file", label="Generated Knowledge Graph"),
114
+ live=False,
115
  )
116
 
117
  print("Iniciando a interface Gradio...")