Spaces:
Sleeping
Sleeping
File size: 6,151 Bytes
e79d672 8b78611 0058c86 0ff7c49 e79d672 8b78611 d6f9dda e79d672 8b78611 b1259cb 86cdd06 0058c86 7d3d794 0058c86 c163620 0058c86 8e0e6ba 0058c86 c163620 0058c86 8e0e6ba 0058c86 c163620 0058c86 1f4a8ec 0058c86 c163620 0058c86 1f4a8ec 0ff7c49 7d3d794 e79d672 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 e79d672 797ab4e 2c38d24 797ab4e 8b78611 797ab4e 8b78611 797ab4e 1f4a8ec 8b78611 112e19a 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 8b78611 112e19a 297e0ee 1f4a8ec d6f9dda c5ad0b2 e3bb044 0058c86 7eb334c 7faa25f 7eb334c 0058c86 7eb334c 7d3d794 0058c86 7eb334c 8b78611 0058c86 8b78611 0058c86 8b78611 0058c86 b1259cb 7d3d794 8b78611 e79d672 ed2ee0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import numpy as np
import os
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
model = model.eval().cuda()
html_file = './demo.html'
@spaces.GPU
def run_GOT(image_array, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
image = image_array
if got_mode == "plain texts OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
elif got_mode == "format texts OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='ocr')
elif got_mode == "format multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
elif got_mode == "format fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=html_file)
# print("res:\n", res)
if "format" in got_mode:
with open(html_file, 'r') as f:
demo_html = f.read()
# print("demo_html: \n", demo_html)
print(os.path.abspath(html_file))
return res, demo_html
return res, None
def task_update(task):
if "fine-grained" in task:
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
]
else:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def fine_grained_update(task):
if task == "box":
return [
gr.update(visible=False, value = ""),
gr.update(visible=True),
]
elif task == 'color':
return [
gr.update(visible=True),
gr.update(visible=False, value = ""),
]
title_html = """
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2>
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[😊 Hugging Face]</a>
<a href="https://arxiv.org/abs/2409.01704">[📜 Paper]</a>
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[🌟 GitHub]</a>
"""
with gr.Blocks() as demo:
gr.HTML(title_html)
gr.Markdown("""
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
### Demo Guidelines
You need to upload your image below and choose one mode of GOT, then click "Submit" to run GOT model. More characters will result in longer wait times.
- **plain texts OCR & format texts OCR**
- The two modes are for the image-level OCR.
- **plain multi-crop OCR & format multi-crop OCR**
- For images with more complex content, you can achieve higher-quality results with these modes.
- **plain fine-grained OCR && format fine-grained OCR**
- In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color.
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="upload your image")
task_dropdown = gr.Dropdown(
choices=[
"plain texts OCR",
"format texts OCR",
"plain multi-crop OCR",
"format multi-crop OCR",
"plain fine-grained OCR",
"format fine-grained OCR",
],
label="Choose one mode of GOT",
value="plain texts OCR"
)
fine_grained_dropdown = gr.Dropdown(
choices=["box", "color"],
label="fine-grained type",
visible=False
)
color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="color list",
visible=False
)
box_input = gr.Textbox(
label="input box: [x1,y1,x2,y2]",
placeholder="e.g., [0,0,100,100]",
visible=False
)
submit_button = gr.Button("Submit")
with gr.Column():
ocr_result = gr.Textbox(label="GOT output")
with gr.Column():
html_result = gr.HTML(
label="rendered html", show_label=True)
gr.Examples(
examples=[
["assets/coco.jpg", "plain texts OCR", "", "", ""],
["assets/en2.png", "plain texts OCR", "", "", ""],
["assets/eq.jpg", "format texts OCR", "", "", ""],
["assets/table.jpg", "format texts OCR", "", "", ""],
["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
],
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result],
fn = run_GOT,
label="examples",
)
task_dropdown.change(
task_update,
inputs=[task_dropdown],
outputs=[fine_grained_dropdown, color_dropdown, box_input]
)
fine_grained_dropdown.change(
fine_grained_update,
inputs=[fine_grained_dropdown],
outputs=[color_dropdown, box_input]
)
submit_button.click(
run_GOT,
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result]
)
demo.launch() |